Abstract: This modulation method is based on selective virtual loop mapping, to achieve dynamic capacitor voltage balance without the help of an extra compensation signal. The concept of virtual sub module (VSM) is first established, and by changing the loop mapping relationships between the VSMs and the real sub modules, the voltages of the upper/lower arm's capacitors can be well balanced. This method does not requiring sorting voltages from highest to lowest, and just identifies the MIN and MAX capacitor voltage's index which makes it suitable for a modular multilevel converter with a large number of sub modules in one arm. Compared to carrier phase-shifted PWM (CPSPWM), this method is more easily to be realized in field-programmable gate array and is conducive to the control of circulating current. Its feasibility and validity have been verified by simulations.
Key terms: Dynamic voltage balance (DVB), modular multilevel converter (MMC), phase disposition pulse width modulation (PDPWM), Photovoltaic (PV),selective virtual loop mapping (SVLM).
[1] M. Guan and Z. Xu, "Modeling and control of a modular multilevel converter-based HVDC system under unbalanced grid conditions," IEEE Trans. Power Electron., vol. 27, no. 12, pp. 4858–4867, Dec. 2012.
[2] S. Jasekar and R. Gupta, "Solar photovoltaic power conversion using modular multilevel converter," in Proc. Student Conf. Eng. Syst., 2012,pp. 1–6. [
3] H.Akagi, "Classification, terminology, and application of the modular multilevel cascade converter (MMCC)," IEEE Trans. Power Electron.,vol. 26, no. 11, pp. 3119–130,Nov.2011. [
4] G. P. Adam, S. Finney, and B. Williams, "Analysis of modular multilevel converter capacitor voltage balancing based on phase voltage redundant states," IET Power Electron. J., vol. 5, no. 6, pp. 726–738, 2012.
[5] S. Rohner, S. Bernet, M. Hiller, and R. Sommer, "Modulation, loses, and semiconductor requirements of modular multilevel converters," IEEE Trans. Ind. Electron., vol. 57, no. 8, pp. 2633–2642, Aug. 2010.
[6] E. K. Amankwah, J. C. Clare, P. W. Wheeler, and A. J. Watson, "Multi carrier PWM of the modular multilevel VSC for medium voltage applications," in Proc. IEEE Appl. Power Electron. Conf. Expo., 2012, pp. 2398–2406.
[7] S.Sedghi, A. Dastfan, and A. Ahmadyfard, "A new multilevel carrier based pulse width modulation method for modular multilevel inverter," in Proc. IEEE Conf. Power Electron. ECCE Asia, Jeju, Korea, 2011,pp. 1432–1439.
[8] E. K. Amankwah, J. C. Clare, P. W. Wheeler, and A. J. Watson, "Multi carrier PWM of the modular multilevel VSC for medium voltage applications," in Proc. IEEE Appl. Power Electron. Conf. Expo., 2012, pp. 2398–2406.
[9] I. Abdalla, J.Corda, and L. Zhang, "Multilevel DC-link inverter and control algorithm to overcome the PV partial shading," IEEE Trans. Power Electron., vol. 28, no. 1, pp. 14–18, Jan. 2013.
[10] M. Hagiwara, R. Maeda, and H. Akagi, "Control and analysis of the modular multilevel cascade converter based on double-star chopper-cells (MMCC-DSCC)," IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1649–1658, Jun. 2011