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Abstract:  
Theory of differentiable infinite dimensional manifolds [1-11] evolved considerably over the last thirty years. 

The necessary and sufficient condition for a Riemannian Banach manifold to be a locally plane space will be 

established. Also, in this work we proved that a Riemannian Banach manifold of constant sectional curvature is 

a locally plane space. 
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I. Notation And Definitions: 
Notation and definitions. 

Let M  be a Riemannian Banach manifold of class ),,3( rC r
 modeled on a Banach space E  [2 ]. 

The symmetric bilinear positive definite continuous functional );(2 IRELf  is said to be strongly 

non-singular [2], if f associates a mapping 
*** );(,.)(: EIRELxffExf x ==→ which is bijective. 

Also, let 
−

g be the metric tensor on the space M , of class .1−rC  we assume that 
−

g  is strong non-singular [2 ]. 

By −

−


x

g , we denote the covariant differentiation of the tensor 
−

g  at the point .Mx
−

 Finally, by 

x

gD
−

−

we mean the Frechet derivative of the metric 
−

g . 

 

2. Locally plane Riemannian Banach manifolds. 

Since M  is  a Riemannian manifold, then on M there exists a unique torsion-free connection
−

  [ 2 ] 

of class ,2−rC such that: .0=
−

g  

Definition (2.1) [ 2 ]: A Riemannian Banach manifold M is called locally plane space, if for all 

Mx
−

, there exists a chart ),,( EUc = at the point 
−

x , such that ,0x  for all 

.)()( EUxx = Where x  and   are the models of the point x  and the connection 
−

  with respect 

to the chart c, respectively. 

Lemma (2.1): The metric tensor 
−

g  of a Riemannian Banach manifold M, which is locally plane, is a 

constant tensor field [4]. 

Now, we assume that MN    is a submanifold of M of the same class[1]. Let 

,)(: MxxiNxi =→
−−−−−

 be the inclusion map. Let ),,( EUc = be a chart at the point MNx 
−

 

on the space M , and ),,( FVd = is a chart at the point MNx 
−

on the space N . 

If )(
−

= xZ and )(
−

= xP are the models of the point 
−

x  with respect to the charts c and d , 

respectively. Also, if i  is the model of the mapping 
−

i with respect to the charts c and d , then we have that: 
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.)()()()()(: EUxZPiFVxPi ==→=
−−

 

This equation is called the local equation of the submanifold N in a neighbourhood of the point 

Nx
−

 with respect to the charts c and d . 

Now, since ),(
−

gM  is a Riemannian manifold, then MN  , will be a Riemannian submanifold of 

M  with respect to the induced metric tensor 

1−

g  such that [2]: 

)),(),((),( 21)(1

1

2
xiTxiTgxxg

x
xxi

x

−−−−−−−

−
−−

− =                                                                (2.1) 

for all NTXXNx
x
−

−−−

21,, (the tangent space of N  at the point )
−

x . Also, we have that 

,: MTNTiT
xx

x −− →  is the tangent map of the map 
−

i at the point 
−

x [1]. 

Similarly, we assume that the metric 
1−

g  is strong non-singular. If 1X  and 2X  are the models of the 

vectors 1

−

X  and 2

−

X  with respect to the chart d , then the models of these vectors with respect to the chart c  

will be: ),(),( 2211 XDiYXDiY Pp ==  respectively. Hence, the local form of the equation (2.1) takes the 

form: 

).(),((),( 21)(21

1

XDiXDigXXg pppip =                                                              (2.2) 

Also, with respect to the Riemannian submanifold N , there exists   unique torsion-free connection 

,1
−

 , such that[2]: 

011 = g  

We assume that  and 
1  are the models of the connections 

−

  and 
1−

 with respect to the charts 

c and d , respectively. 

In [3], the first derivative equation of the submanifold N  is established in the form: 

)),,((),( 2121

2,1

XXAnXXDi ppp =                                                                  (2.3) 

where, );()()(: ⊥
−

→= xx FWLnFVxxn   is an isomorphism of class 
1−rC  and 

⊥

xF  

is the orthogonal complement of the space F  at the point Fx . 

 

Also, the space W  is isomorphic to the space 
⊥

− )( NT
x

. Finally, 
2,1

  is the mixed covariant differential 

operator defined on the tensors of the space N , and );(2 WFLAp   is the second essential form of the 

space N . 

Also, the space W is an isomorphic to the space 
⊥

− )( NT
x

. Finally, 
2,1

  is the mixed covariant 

differential operator defined on the tensors of the space N , and );(2 WFLAp   is the second essential form 

of the space N . 

In [4], it is proved that there exists a chart ),,( EUC =  at the point Nx , such that the relation 

between the metric tensor g  and the connection   is given in the form:  
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)],,;(),;(),;([
2

1
)),,(( 213321312321 XXXDgXXXDgXXXDgXXXg xxxxx −+=  

For all EXXXEUxx = 321 ,,,)()( . Where xg  and x  are the models of the metric 

tensor xg  and the linear connection 
x  with respect to the chart C  in the above relation respectively. 

Now, assume that 'g  , is another Riemannian metric function on the space M . 

Definition (2.2) [ 2 ]  : The two functions g  and g '  are conformal, if there exists a mapping 

,)(: IRxMx →   such that: 

,).( −
−

=
−

xx gxg                                                                                             (2.5) 

for all .Mx  

Definition (2.3) [4]: The Riemannian Banach manifold ),( gM is called locally plane, if there exists 

on M a locally plane metric 'g , conformal to g  such that: 

,0,.
)(

=
−−

−

−

−−−

x
x

Rgeg
x

x

 for all Mx
−

, where '
−
x

R  is the curvature tensor of the space ),(
−

gM at the 

point x  . 

Lemma (2.2) [ 2 ] : Let H  be a vector space with a bilinear and strong non-singular operator g [2], 

such that .3dim H  Then, in the space H , we have that: 

i- There exist two arbitrary vectors WS,  and a vector Z  , which is linearly independent with them; 

ii- There exists a vector X , perpendicular to the vectors WS,  and Z with respect to the metric g such that 

X is linearly independent of these vectors. 

Now, we consider the following theorem: 

Theorem (2.1): The necessary and sufficient condition for a Riemannian Banach manifold M  with a 

strong non-singular metric g , to be locally plane, is to find a symmetric tensor ),( YXP
x
− of type (0,2)  on the 

space M , such that the following conditions are satisfied: 

),(),().,(),,(
−

−

−

−

−

−

−

−
−−− += ZYXgZXYPZYXR
xxx

                                               (2.6) 

,0),;( =
−−

−

−

−
−−

Zp YX
x

                                                                          (2.7) 

 

Where )(
−−

x  is a tensor of type (1,1), is a solution of the equation: 

))(,(),(
−−−−−−

−
− = XYgYXP

x
x

                                                                         (2.8) 

 

Furthermore, when ,3dim M we can show that, the condition (2.7) is a direct result, of the 

condition (2.6). 

Remark (2.1) In equations (2.6) and (2.7), there exists an alternation with respect to the underlined 

vectors, that does not involve division by 2. This convention will be used henceforth. 

Proof: It is sufficient to prove this theorem, locally, with respect to an arbitrary chart. 

Necessity: We assume that ),,( EUc =  is a chart at the point Mx
−

such that ,g  and R  are the 

models of 
−−

,g and , R  respectively with respect to this chart. 
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Also, assuming that, the Riemannian Banach manifold ),(
−

gM is locally plane. Then there exists a locally 

plane metric '
−

g , conformal to ,
−

g  such that: 

,0',.'
)(

= xx

x

x Rgeg


                                                                             (2.9) 

for all .)()( EUxx =
−

 Therefore, we obtain: 

)].,;('),;('),;('[
2

1
)),(',(' ZYXDgYYZDgZXYDgZYXg xxxxx −+=  

Applying (2.9) in this last equation, yields: 

++=

−

−+

++=

),().((
2

1
)),(,(2[

).,().(),;(

),().(),;(

),()(),;([
2

1
)),(',('

)(

)()(

)()(

)()(

ZXgYDZYXge

ZYgXDeZYXDge

XYgZDeXYZDge

ZXgYDeZXYDgeZYXg

xxxx

x

xx

x

x

x

xx

x

x

x

xx

x

x

x

xx

















 

))].,().(),().( ZYgXDYXgZD xxxx  −                                                           (2.10) 

But, from equation (2.9), we have: 

)).,(',(.)),(',('
)(

ZYXgeZYXg xx

x

xx =


                                                (2.11) 

Using equations (2.10) and (2.11), we get: 

+= )),(,()),(',( ZYXgZYXg xx
x

x  

),().(),().([
2

1
YXgZDZXgYD xxxx  +  )].,().( ZYgXD xx                       (2.12) 

Now, the function IRXDEXD xx → )(:   is linear and continuous [1]. This means that 

*,);( EIRELD x = where *E  is the dual space of the space .E  Hence, taking into account that the 

metric g is strong non-singular, then there exists a vector EBX   such that: 

),(),( XDBXg xxx =                                                                                 (2.13) 

 

for all .EX   

Using equation (2.13) into equation (2.12), we get: 

].).,().().([
2

1
),(,(

)],().,(),().(),().([
2

1

)),(,()),(',(

xxxxxx

xxxxxx

xxxx

BZYgYZDZYDZYXg

ZYgBXgYXgZDZXgYD

ZYXgZYXg

−++

=−+

+=



  

Since, g is non-singular, we get: 

).]).,().().([
2

1
),(),(' xxxxxx BZYgYZDZYDZYZY −++=                      (2.14) 

But, the curvature tensor 

x

R' of the space M with respect to the linear connection −

−


x

   takes the form [ 2  ]: 

),),,('('),;('),;(' ZYXYXZDZYXR xxxx +=                                                     (2.15) 

where 'xR is the model of 'xR with respect to the chart ),,( EUc = at the point Mx . 
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Differentiating both sides of equation (2.14) in the direction of a vector Z , we have: 

)].().,().,;().;(

).;([
2

1
),;(),;('

2

2

ZDBYXgBYXZDgXYZD

YXZDYXZDYXZD

xxxxx

xxx

−−

++=
−

−




                                    (2.16) 

Another time, from equation (2.14), we can get: 

.)),,((
2

1
).,().,(

4

1
).().,(

4

1

),().,(
2

1
.)().(

4

1

)).,((
2

1
)),,(()),,('('

xxxxxxxxxx

xxxxx

xxxxxx

BZYXgBZBgYXgYBDZXg

ZBYXgYZDXD

YZXDZYXZYX

−+

+−

−−=







            (2.17) 

 

 

Substituting from equations (2.16) and (2.17) into equation (2.15), we can obtain: 

].).,(
2

1
)().[,(

2

1

)].().,(
4

1
)().(

4

1

));((
2

1
[),;(),;('

xxxxx

xxxxx

xxx

BZBgZBYXg

YBDZXgZDXD

XzDZYXRZYXR

−

−+

−+=





                                            (2.18) 

 

Now, if denoting: 

),(
2

1
)( XDX xx  =                                                                                (2.19) 

+−= )().(
4

1
)),((

2

1
),( YDXDYXDYXP xxxx   

),,().,(
8

1
xxxx BBgYXg                                                                               (2.20) 

 

we have: 

).,().,(
8

1
)().();(),( xxxxxxxx BBgYXgYXYXYXP +−=                            (2.21) 

In this case, equation (2.18) takes the form: 

].).,(
8

1
).,(

4

1

)(
2

1
).[,().,(),;(),;('

YBBgBYBg

YBZXgYXZPZYXRZYXR

Xxxxxx

xxxxx

+

−++=

                       (2.22) 

 

Using x as a solution of the equation: 

),,())(,( YXPYXg xxx =                                                                             (2.23) 

then considering equations (2.20) and (2.23), we get: 

).,().,(
8

1
)().(

4

1
));((

2

1
),())(,( xxxxxxxxxx BBgXYgXDYDXYDYXPYXg +−==  (2.24) 

From equation (2.13), we have: 

)).(,(),;();( YBXgBXYgXYD xxxxx ==   

Applying this last equation into equation (2.24), yields: 
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),,().,(
8

1
),().(

4

1
))(,(

2

1
))(,( xxxxxxxxx BBgXYgBYgXDXBYgXYg +−=   

and since g  is non-singular, we obtain: 

.).,(
8

1
).,(

4

1
)(

2

1
)( XBBgBBXgXBX xxxxxxxx +−=                                      (2.25) 

Now, from equations (2.22) and (2.25), it is clear that: 

).().,().,(),,(),;(' YZXgYXZPZYXRZYXR xxxxx ++=                                (2.26) 

Putting ,0),;(' =ZYXRx  into equation (2.26), we have: 

).(),().,(),;( ZYXgZXYPZYXR xxxx +=                                                    (2.27) 

This means that, the equality (2.6) in the theorem, is satisfied. 

By covariant differentiation of equation (2.19), locally with respect to EY  , we get: 

)].,(();([
2

1
);( 2 XYDXYDXY xxxx −=   

From this equation, we get: 

.0);( = XYx                                                                                         (2.28) 

Using equations (2.21) and (2.28), we have: 

,0),( =YXPx this means that, the tensor ),( YXP
x
−  is symmetric. Furthermore, from equation (2.21) we 

get: 

).,().,(
8

1
)().(),(),( xxxxxxxx BBgZYgZYZYPZY −+=                              (2.29) 

Covariant differentiation of equation (2.29) locally with respect to EX  yields: 

).,;().,(
8

1

),().,;(
8

1
);().(

)().;(),;(),;)((

xxxx

xxxxxx

xxxx

BBXgZYg

BBgZYXgZXY

ZYXZYXPZYX



−−

++=





 

Using equation (2.29) into this last equation, we have: 

)).(,().,(
4

1

)],().,(
8

1
)().(),().[(

)().;(),;(),;)((

XBBgZYg

BBgZXgZXZXPY

ZYXZYXPZYX

xxxx

xxxxxxxx

xxxx



−−+

++=





 

Applying the alternation convention with respect to the vectors YX , and using Ricci's identity [ 1 ] , 

we obtain the condition of complete integration of equation (2.29) as follows: 

−−+ ),().,().(
8

1
),().(),;( xxxxxxxx BBgZXgYZXPYZYXP   

.0)),;(())(,().,(
4

1
=+ XYZRXBBgZYg xxxxxx                                             (2.30) 

Now, using equations (2.25) and (2.27) into equation (2.30), we can get: 

.0)().,().,(
8

1

)().,().,(
4

1
)(().,(

2

1
))(,().,(

4

1

)().,().(
8

1
),;( ,

=

−−+

−−

YBBgXZg

BYZgBXgXBYZgXBBgZYg

BBgZXgYZYXP

xxxxx

xxxxxxxxxxxx

xxxxxx







                            (2.31) 

Finally, applying equations (2.13) and (2.19) into equation (2.31), we obtain:- 
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,0),;( = ZYXPx                                                                                      (2.31) 

for all .,,,)()( EZYXEUxx =  This means that, the equality (2.7) in the theorem, is satisfied. 

Now, if ,3dim M  we show that, the condition (2.7) follows directly from the condition (2.6) in 

the considered theorem: 

In this case, we use Bianchi's identity [ 1 ] , which states that: 

,0),;;(),;;(),;;( =++ YSXZRSZXYRZYXSR xxx   (2.33)                                                                                                         

for all .,,,,)()( EXZYSEUxx =  

Also, denoting: 

),,,,()),;(,( ZYXSrZYXRSg xxx =                                                             (2.34) 

and using the equations (2.23) and (2.27) into equation (2.34), we have: 

).,().,(),(),(),;;( WXPZYgYZPWXgWZYXr xxxxx +=                                   (2.35) 

Applying identity (2.34) into equation (2.33), we get: 

.0),,;;(),,;;(),,;;( =++ ZSYXWrSWYXZrWZYXSr xxx                       (2.36) 

Covariant differentiation of equation (2.35) with respect to ES  , we obtain: 

).,;().,(),;().,(),,;;( WXSPZYgYZSPWXgWZYXSr xxxxx +=  

Similarly, we get: 

).,;().,(),;().,(),;;(

),,;().,(),;().,(),,;;(

ZXWPSYgYSWPZXgZSXWr

SXZPWYgYWZPSXgSWYXZr

xxxxx

xxxxx

+=

+=
 

Substituting these last three equations into equation (2.36), we have: 

0),;().,(),;().,(

),;().,(),;().,(

),;().,(),;().,(

=+

++

++

ZXWPSYgYSWPZXg

SXZPWYgYWZPSXg

WXSPZYgYZSPXXg

xxxx

xxxx

xxxx

                                         (2.37) 

 

Applying lemma(2.2) into equation (2.37), we obtain: 

,0),;().,(),;(.),(),;.),( ( =++ ZXWPSYgSXZPWYgWXSPZYg xxxxx  

for all .,)( EYEUx   

Taking into account , in the last equation , that xg  is non – singular yields: 

.0),;(.),;(.);(. =++ ZXWPSSXZPWWXSPZ xxx x
 

Since Z is linearly independent of W and S  , then we get : 

.0),;( = XWSPx  

This means that , we have three arbitrary vectors ,,, 3EXWS  satisfy the equations: 

,0),(),( == SXgWXg xx  and satisfy, also the equation .0),;( = XWSPx  Furthermore, 

since ),;(),( 2 IRELXWPx  then );(),;( 3 IRELWWSPx   is a trilinear, anti-symmetric form with 

respect to the vectors S  and W . Hence, from this and by using lemma (2.3.5) [ 2 ], we deduce that, 

),;( XWSPx  

 

can be represented as follows: 

),,().(),;( XWgSXWSP xxx =                                                                 (2.38) 

where );( IRELx  is a linear, continuous form. From equations (2.37) and (2.38), ewe can find: 

,0),().,().(),().,().(

),().,().(),(),().(

),().,()(),().,().(

=−

+−

+−

ZYgSXgWSYgZXgW

SYgWXgZWYgZXgZ

WYgZXgSZYgWXgS

xxxxxx

xxxxxx

xxxxxx







                              (2.39) 
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for all EUx  )(  and for all .,,, EWSYX   

Remark (2.2): 

Since ,3dim M  then for all ,,,, EZWXS   we can find EY  such that 0),(),( == ZYgSYg xx . 

Appling this remark, into equation (2.39), we get: 

,0)).,().().,().(,( =− ZYWgSSYWgZXg xxxxx  for all ,)( EUx   and for all .EX   

Taking into account, that g is non-singular, we have: ,0).,()().,().( =− ZYWgSSYWgZ xxxx                                                     

(2.40)   for all EUz  )(  and for all .,, EWZS   

Assuming that the vector S is linearly independent of the vector Z , we obtain: 

,0),().( =YWgZ xx  for all EUx  )(  and for all ., EWZ   

Since W  is arbitrary vector and the metric g is non-singular, we have: ,0)( =Zx  for all 

.,)( EZEUx   this means that .0                (2.41) 

Hence, ,0),;(  YWZPx                                                                           (2.42) 

for all EUx  )(  and for all ,,, EWYZ   which is required. 

Sufficiency: 

For this aim, we assume that M  is a Riemannian Banach manifold with a strong non-singular metric 

.g  Also, we suppose that the curvature tensor R  of the space M , satisfies the equality (2.27) with the 

condition (2.32) such that the tensor ),( YXP x is symmetric. Then, we show that the space M  is locally 

plane. 

But, since the condition (2.32) is satisfied, then the equation (2.29) has a solution )(Yx . Also, the 

equation (2.19) will has a solution  . In this case, we make the transformation ,.' )(

x

x

x geg = and we get the 

Riemannian Banach manifold ( )', gM with a curvature tensor .0'R  Hence the space ),( gM  is conformal 

to the locally plane space ( )', gM  and this completes the proof of the theorem. 

 

Now, we introduce the following lemma: 

Lemma (2.3): Let E  be a vector space such that dim ,4E   with a  strong non-singular operator 

).;(2 IRELg   If EYX ,  are arbitrary vectors such that 0X  and X  is perpendicular to Y  with 

respect to the operator g , then there exists a vector EZ  , such that Z is perpendicular toY  and the vectors 

ZX ,  are linearly independent. 

Proof: We have the following two cases: 

(1) If Y is a non-isotropic vector )0),(( YYg  and X  is perpendicular toY  , then X and Y  are linearly 

independent vectors. 

(2) If Y is an isotropic vector, then we, also have two cases: 

(a) The vectors X  and Y are linearly independent. 

(b) The vectors X  and Y  are linearly dependent. These cases are considered as follows: 

(1) In this case we have 0),( YYg  and since dim 4E ,  then there exists a vector ES  , which is 

linearly independent of the vectors X  and Y . Furthermore, if S  is not perpendicular to Y , then we can 

take a vector EZ   to be perpendicular to Y as follows: 

,).,().,( SYYgYYSgXZ −+=   where   is an arbitrary number. It is clear that the vectors Z and X  

are linearly independent and the lemma is valid in this case. 

(2) (a) In the present case 0),( =YYg  and the vectors YX , are linearly independent. Then, if we take 

,YZ =  we get 0),( =YZg  such that the vectors X  and Z  are linearly independent and the lemma is 

true. 

(2) (b) In this case IRmmYXX = ,,0   is constant and  .0),( =YXg  But the lemma is valid also. 

Since,  if the lemma is not true, then there exists a vector EZ   such that Z  is perpendicular to Y  and 

the vectors X  and Z are linearly dependent. And, in this case we have that ,1dim = ⊥Y  where 
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⊥ Y  is the orthogonal complement [3] of the hypersurface  Y . This means that dim 2=E , which 

is a contradiction with the fact that dim .4E  This completes the proof of the considered lemma. 

 

II. Riemannian Banach Manifolds Of Constant Sectional Curvature: 

Let ),(
−

gM  be a Riemannian Banach manifold of constant sectional curvature [2]. In this case, the 

curvature tensor ),;( 213 XXXR
x
−

−

 on the Banach manifold M has the form [2]: 

],).,().,([),;( 231123213 XXXgXXXgXXXR
xx

x
x

−−
−

−

−=                                   (3.1) 

for all ,,,, 321 MTXXXMx
x
−

−

 where −

x

  is a real function of points of the space M  and is called the 

Gaussian curvature of the manifold M . Now, we consider the following theorem: 

Theorem (3.1): A Riemannian Banach manifold ),( gM  of constant sectional curvature,  such that 

dim 4M   is a locally plane space. 

Proof: It is sufficient to prove this theorem locally with respect to a chart  ),,( EUc =  at a point .Mx
−

 

We assume that the manifold M  is of class  ),3( rC r
 with a strong non-singular metric g [2]. 

Now, the curvature tensor xR  of the space M , with respect to a chart ),,( EUc = at a point 

Mوx
−

takes the form: 

],).,().,([),;( YXZgZXYgZYXR xxx −=                                                      (3.2) 

for all .,,,)()( EZYXEUxx =
−

 Where  xR  and xg   are the models of the tensor −
x

R   and the 

metric 
−
x

g  with respect to the chart c, respectively. Hence, by using theorem (2.1) we will find a symmetric 

tensor ),( YXP
x
−  satisfies the following  conditions: 

−=− ZXYPYXZgZXYg xxxx ).,(]).,().,([  

),().,()().,().,( YZXgZYXgYXZP xxxxx  −+                                                (3.3) 

,0),;( = ZYXPx                                                                                                       (3.4) 

such that )),(,(),( YZgZYP xxx =                                                               (3.5) 

for all .,,,)( EZYXEUx   

Multiplying both sides of equation (3.3) by the arbitrary vector ES   and using the equality (3.5) , gives us: 

=− )],().,(),().,([ YSgXZgZSgXYg xxxxx  

).,().,(),().,(),().,(),().,( SYPZXgZSPYXgYSgXZPZSgXYP xxXxxxxx −+−   (3.6) 

Now, using lemma (2.1) we find that: for all 0Y , ES    and S  is perpendicular to Y ,  there exists a 

vector EZ   such that S   is perpendicular to Z  and the vectors  YZ,  are linearly independent. 

Hence, from equation (3.6) we get: 

,0),().,(),().,( =− SYPZXgZSPYXg xxxx  

for all .,)( EXEUx   

Since the metric g  is non-singular, we obtain: .0).,().,( =− ZSYPYZSP xx  

Taking into account that the vectors Z  and Y  are linearly independent, we get: .0),( =SYPx  
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Also, using lemma (2.3.3) [2] which states that: If for all a pair of vectors 
2),( ESY   satisfies the 

condition ,0),( =SYg x  the following condition 0),( =SYPx  is also, satisfied, where ).;(2 IRELPx   

Then there exists a real number x   such that  ).,(.),( YXgYXP xxx =                                            (3.7) 

Thus, from the relations (3.3) and (3.7) we have: 

−=− ZXYgYXZgZXYg xxxxx ).,(.]).,().,([   

).().,()().,().,( YZXgXYXgYXZg xxxxxx  −+                                         (3.8) 

Also, from equations (3.5) and (3.7) we obtain : )),(,(),(. YZgZYg xxxx  =  

for all .,,)( EZYEUx   

But, since the metric g  is non-singular, we get: ...)( YY xx  =  

From this result and using equation (3.8), it is clear that: 

−=− ZXYgYXZgZXYg xxxxx ).,(.2]).,().,([   

,).,(.2 YXZg xx  

for all .,,,)( EZYXEUx   

Hence, by taking the vectors  Z and Y  are linearly independent we have: 

),,(.2),(. XYgXYg xxxx  =  

for all, .,)( EXEUx   

Since the metric g  is non-singular and the vector  X  is arbitrary , we obtain: .0),( YXg x  This means 

that .2 xx  =  . From which and considering equation (3.7) yields: 

).,(
2

),( YXgYXP x
x

x


=                                                                                (3.9) 

Furthermore,  the tensor ),( YXPx  satisfies the condition (3.4) which in the form: 

,0),,( = YXSPx  for all  )(Ux .,,, EYXSE   Hence, the tensor  ),( YXPx satisfies all the 

required conditions and this completes the proof of the considered theorem. 

 

 

III. The Metric Tensor Of A Banach Space Of Constant Sectional Curvature: 

Let M  be a Riemannian Banach manifold of constant sectional curvature x  [2] of class ),3( rC r
 

modeled on a Banach space E  . Assume that the metric tensor −

−

x
g  on the space M is strong non-singular [2]. 

Now, we consider the following theorem: 

Theorem (4.1): If the metric tensor −

−

x
g  on the manifold M , with respect to a chart ),,( EUc =  at the 

point Mx
−

 has the form: 

,/),(),(
21

xx YXgYXg =                                                                          (4.1) 

for all   EYXEUx  ,,)( . Where 
1g  is a bilinear continuous symmetric strong non-singular, 

constant form, does not depend on the point )(Ux  and is defined on the space E  . Then the scalar 

function x on the set )(U will has the form: 

).,(.
4

1 1 xxgx
x


+=  

Proof: Differentiating the relation (4.1) with respect to the point EUx  )(  in the direction of the 

vector EZ  , we get: 

,
)().,(2

),;(
3

1

x

x
x

ZDYXg
YXZDg



−
=  
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similarly we have: 

,
)().,(2

),;(
3

1

x

x
x

YDZXg
ZXYDg



−
=  

.
)().,(2

),;(
3

1

x

x
x

XDZYg
ZYXDg



−
=  

Using the relations (1) and (4.1), we can obtain: 

++


−
= ])).().([

1
,()),(,( 11 XYDYXDZgYXZg xx

x

x  

).().,(
1 1 ZDYXg x

x




                                                                                  (4.2) 

Now, for all  EUx  )( we have that: 

IRXDEXD xx → )(:   is a linear continuous form [1] . And since the form 
1g  is strong non-

singular, then there exists a vector EBx   such that: 

),,()( 1

xx BXgXD =                                                                                   (4.3) 

for all  .,)( EXEUx   

Hence, from equations (4.2), (4.3) and by taking into account that the form 
1g  is non-singular, we can get: 

].).().().,([
1

),( 1 XYDYXDBYXgYX xxx

x

x −−


=                              (4.4) 

Differentiating the relation (4.4) with respect to EUx  )(  in the direction of the vector EZ   , we 

obtain: 

−−


= YXZDZDBYXgYXZD xx

x

x ).;()().,([
1

),;( 21
                                                            

].).().().,([
)(

]).;( 1

2

2 XYDYXDBYXg
ZD

XYZD xxx
x

x
x −−




−                    (4.5) 

Also, from relation (4.4) we can have: 

 −−


= xxxx

x

xx BZYgXDBZBgYXgZYX ).,().().,().,(
1

),,(( 111

2
 

++− ZYDXDZBDYXgBZXgYD xxxxxx ).().(2).().,().,(),( 11
 

++ YXDZDBZDYXg xxxx ).().().().,(1
 

.).().( XYDZD xx                                                                                   (4.6) 

Now, from equations (4.5) and (4.6), we can get: 

=−= )),,((),;(),;( ), ZYXYXZDZYXR xxxx  

+−


]).;()().,([
1 21 YXZDZDBYXg xx

x

 

,).().,(
1 1

2
YBDZXg xx

x




                                                                             (4.7) 

where  in this equation(4.7), ),;( ZYXRx  is the model of the curvature tensor  ),;( ZYXRx  of the space 

M with respect to the chart c. 

Since the space M has constant curvature [2], then by using equation (4.1) into equation (4.7) yields: 

=−=−


]).,().,([]).,().,([ 11

2
YXZgZXYgYXZgZYXg xxx

x

x 
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−


−


)().,(
1

)().,(
1 11 YDBZXgZDBYXg x

x

x

x

 

+


+


ZXYDYXZD x

x

x

x

).;(
1

).;(
1 22

 

,).().,(
1

).().,(
1 1

2

1

2
ZBDYXgYBDZXg xx

x

xx

x




−


                                    (4.8) 

for all .,,,)( EZYXEUx   

Now, assuming that dim 4M  and using lemma (2.1) , we deuce that: for all arbitrary perpendcular 

vectors EZX , with respect to the form 
1g and 0Z , there exists a vector EY  such that YX , are 

perpendicular with respect to 
1g  and the vectors  ZY ,  are linearly independent. Hence, from this and using 

equation (4.8) we can obtain: 

.0);(2 = XZD x
                                                                                      (4.9) 

Also, considering lemma (2.3.3) [2], 

then there exists a real number IRx  such that: 

).,(.);( 12 XZgXZD xx =                                                                       (4.10) 

We will show that −

−

x  is a scalar Quantity, does not depend on the point. Differentiating equation (4.3) in the 

direction of a vector EY  and using (4.10), we get: 

),;(.);())(,( 121 XYgXYDYDBXg xxx ==  

for all .,,)( EYXEUx   

Since, the form 
1g  is non-singular, we can obtain: 

.).();(2 XYDYXBD xx =  

But ),;();( 22 XYBDYXBD xx =  from which, assuming that the vectors YX , are linearly independent, we 

have: 

.0)( =XD x  This means that x  is a scalar, does not dependent on .)( EUx   Hence, from (4.10) 

we deduce that:                                                                                                ).,();( 12 YXgYXD x =                                                                            

(4.11) 

Now, to find a solution for the differential equation (4.11) with respect to , we remark that: 

)),;(;();(.)( 2

12 IRELELIRELgDDD xx ==  is a constant function. Hence, if we 

put ,)( fDD x =   where )),;(;( IRELELf   

then we get: ,)()( CxfxDD x +==  

Where  );( IRELC  is a constant function and ).;(,.)()( 1 IRELxgxf =   

Finally, we obtain: 

0)()))(((
2

1
)( CxCxxfxx ++==  

,)(),(.
2

1
0

1 CxCxxgx ++=                                                                        (4.12) 

for all EUx  )(  such that .0 IRC   

Furthermore, all the solutions of equation (4.11) will be in the form (4.12). Since, if x  is another 

solution of the equation (4.8), then xxX −=  will be a solution of the equation: .02 xD   

This means that  ),;( IRELhD x =  is a constant function. And we get: 
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,)()( 0hxhxx +==  for all  EUx  )(  such that IRh 0 . From which, it is clear that: 

+++=+= 0

1 )(),(.
2

1
CxCxxgxxx   ,)(),(.

2

1
)( 21

1

0 CxCxxghxh ++=+   

where ),;()()()(1 IRELxhxCxC +=  .002 IRhCC +=  

This shows that, all the solutions of the differential equation (4.11) have the form (4.12). 

Furthermore, since );( IRELC  is a covector and since the form
1g  is strong non-singular, then there exists 

a vector  EA  such that: 

),,()( 1 XAgxC = for all .)( EUx   

From which and using (4.12), we obtain: 

.),(),(.
2

1
)( 0

11 CXAgxxgxx ++==                                                      (4.13) 

Therefore, it is clear that: 

).,(),(.)( 11 YAgYxgYD x +=                                                                (4.14) 

Hence, we get: 

),,(.);( 12 YZgYZD x =                                                                    (4.15) 

for all .EZ   

Also, by using equations (4.3) and (4.14) we deduce that: == )(),(1 YDYBg xx
 

),,(),(. 11 YAgYxg +=   

for all .,)( EYEUx   

And we get: ,0).,(1 =−− AxBYg x   for all .),( EYUx   Taking into account that 
1g  is non-

singular, we have  .. AxB xx +=                                        (4.16) 

Thus:   ,.)( YYDB xx =                                                                             (4.17) 

for all .EY   

Similarly, considering equations (4.14) and (4.16), it is clear that: 

).,(2),(),(.)( 1112 AxgAAgxxgBD xx  ++=                                             (4.18) 

Now, applying equations (4.13), (4.15),(4.17), and (4.18) into equation (4.8) and then comparing the 

coefficients of the vector Z in both sides of the result, we can obtain: 

)],,(),(.2),(.).[,(.
1

),(.
2

),(. 11121

2

11 AAgAxgxxgYXgYXgYXg
xxx

x ++


−


=





 

for all .,,)( EYXEUx   

From which, by considering equation (4.13) and using the non-singularity of 
1g  , we can have: 

.0),(.2 1

0 =−− AAgC x                                                                            (4.19) 

Now, to complete the proof of theorem (4.1), we must consider the following theorem: 

Theorem (4.2): For a strong non-singular Riemannian metric g of a Banach Riemannian manifold 

M of constant sectional curvature x , which represents, locally with respect to a chart ),,( EUc =  in the 

form: ,
),(

)2(),(
2

1

x

x

YXg
YXg


==  where .),(),(.

2

1
)14()( 0

11 CxAgxxgx xx ++===   such 

that  the constants IRC 0, , and the vector EA  satisfy the condition (4.19), we can find another chart 

),,( EUc = in which the metric g  takes the form: 

,

)],(
4

1[

),(
),(

21

1

xxg

YXg
YXg

x
x

+


=

 
                                                           (4.20) 
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which is a special case of the functions (4.1) and (4.13) when: ,1,
2

0 == Cx  

and .0=A  

Proof: According to the values of the constants   and ,0C  the following cases are considered: 

Case 1: If ,0 , then equation (4.12), by taking into account the condition (4.19) takes the form: 

.
2

).,.(.
2

1 1







x

x AxAxg +++=                          (4.21) 

Now, we consider the transformation: 

].
),(

2
[1)(

1
A

xxg

x
xFx −




==


                                                      (4.22) 

Thus we have: 

,
).,.(

).(2
)(

1

1

AxAxg

Ax
xFx

++

+
== −




                                                       (4.23) 

and this gives us a new chart ),,,(' EUc =   for which the metric ),( YXg x  takes the form: 

,
))](([

))(),((

))((

),(
),(

2

1

2

1
11

xF

YDFXDFg

x

YXg
YXg xx

x



=


=                                         (4.24) 

where ],
)),(

),(2.

),(
[

2
)(

21

1

1 xxg

xxgx

xxg

X
XDFx




−




=


                                           (4.25) 

 

and similarly      ].
)),(

),(2.

),(
[

2
)(

21

1

1 xxg

Yxgx

xxg

Y
YDFx




−




=


                           (4.26) 

Hence, from equations (4.21), (4.24), (4.25) and (4.26) we can get: 

),,(

)],(
4

1([

),(
),(

21

1

YXg

xxg

YXg
YXg x

x
x

=

+


= 

 

which is required. 

Case 2: If  0=  and  ,00 C , then equation (4.12) takes the form: 

.),()( 0

1 CxAgx +=                                                                           (4.27) 

Also, the condition (4.22) becomes: 

.),(1

xAAg −=                                                                                         (4.28) 

Then, we consider the transformation: 

,
),(

2
)(

1

1

xxg

x
xFx




==                                                                             (4.29) 

and    .
),(

2
)(

1

1

xxg

x
xFx


== −

                                                                     (4.30) 

With respect to this transformation, the metric xg  has the form: 

=



=

+
= 

2

1

2

0

1

1

))](([

))(),((

]),([

),(
),(

xF

YDFXDFg

CxAg

YXg
YXg xx

x  

,

)],(),(.
2

[

),(

2110

1

xAgxxg
C

YXg

+


=  

which is the first case with   AAC == ,00 and .00 =


C  
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Case 3: If 0=  and ,00 =C  then we obtain: 

),,()( 1 xAgx =                                                                       (4.31) 

and .),(1

xAAg −=  

Hence 0A , and since the form 
1g  is a strong non-singular, then there exists a vector  ES  such that: 

.0),( 0

1 = SSAg                                                                                (4.32) 

Thus, by considering the transformation ),(,)( 1 xFSxxSxxxF −=−=+==  then the metric g will be 

in the form: .
)],([

),(
),(

21

1

XAg

YXg
YXg x =  

This means that: 

=



=

21

1

))](,([

))(),((
),(

xFAg

YDFxDFg
YXg xx

x  

,
]),([

),(
2

0

1

1

SxAg

YXg

+


                                                                                      (4.33) 

which is the second case with AA =  and 00 SC = . This completes the proof of theorem (4.1). 

Hence, in the case of a Riemannian Banach manifold  of constant Gaussian curvature, and at any point Mx  , 

there exists a chart ),,( EUc = , such that the metric tensor of this space takes the canonical form (4.20) 

with respect to this chart. Which is a generalization of this result in the finite-dimensional Riemannian 

geometry. 
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