
IOSR Journal of Applied Physics (IOSR-JAP) 

e-ISSN: 2278-4861.Volume 10, Issue 4 Ver. II (Jul. – Aug. 2018), 57-71 

www.iosrjournals.org 

DOI: 10.9790/4861-1004025771                                     www.iosrjournals.org                                         57 | Page 

 

Light Velocity Quantization and Harmonic Spectral Analysis 
 

Javier Joglar Alcubilla
 

Avionics Department, Barajas College, Spain 

Corresponding Author: Javier Joglar Alcubilla 

 

 Abstract: The quantization hypothesis of propagation velocity of any interaction in quantization intervals of 

size c will allow the generalization of Einstein's relativity principle establishing that “the laws of nature are the 

same in any inertial reference system, regardless of its application speed coordinate”. For its justification we 

will use the Lorentz transformations of m_degree, supported by a detailed wave equation study with which it is 

concluded that “the wave propagation speed measured in a given observation does not depend on the origin of 

the wave, but precisely of the speed coordinate from where the measurement is made”. Through spectral 

analysis, power discrepancies will be observed between generated signals and the equivalent measured signals 

which are explained through the quantization hypothesis of the propagation velocities of the different harmonics 

that compose such electromagnetic signals. 
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I. Introduction 
The speed of light (c), constant and invariable, is the basis of Special Relativity Theory (SR) principles 

[1]. It is considered in these terms by the results obtained experimentally. Moreover, in Maxwell's equations a 

characteristic velocity intervenes, the propagation velocity of electromagnetic waves in vacuum, which is also c 

[2]; for this reason, Maxwell's equations are not invariant with respect to the Galileo transformations (GT). To 

solve it, the SR introduced two basic postulates [3]: 

1. Einstein's relativity principle (ERP), whereby “all the laws of nature are the same in any inertial reference 

system” [4]. That is, the laws of nature are invariant when passing from an inertial system to another also 

inertial. The ERP is a generalization of the Galileo’s relativity principle (GRP) [5], though this second is not 

applicable to the Maxwell’s equations, so from these equations the ERP is necessary. 

2. The existence principle of an interactions limit propagation velocity, in a vacuum, c. With electrodynamics 

the existence of a finite propagation velocity in electromagnetic interactions is established, which 

subsequently extends to the other interactions, gravitational, nuclear and weak. The existence of a limit 

propagation velocity in interactions means that there is a certain relationship between the intervals of space 

and time, revealed by the SR. It also presupposes a speed limitation of material bodies [6]. 

We will use the formalism of the Lorentz transformations (LT) for the analysis of the wave equation 

that relates wavelength, frequency and propagation velocity, under the point of view of the extended relativity 

(ER) proposed by [7]. Thus, it explains why an inertial observer always interprets the interactions seen in a 

vacuum with propagation velocity c, although they may be propagating at different speeds, in all cases positive 

integer proportional to c, that is, with mc (m=1, 2, …). In the theoretical development of the ER, quantization 

hypothesis of propagation velocity of any interaction is introduced in quantization intervals of size c, so that it is 

considered that the interactions can be traveling with velocities c, 2c, 3c, .., (m + 1) c, with m a positive integer 

number, naming each of these velocities as speed 0,1, 2, .., m_coordinates, respectively. Thus, we are able to 

generalize the LT of the SR [8] in some equations that will serve as generic transformations of movement in any 

speed m_coordinate, that is, the LT for the speed m_coordinate (LTm) is developed. 

The ERP embodied in the LT used by the SR provides invariance in the Maxwell’s equations, although 

at the expense of a constant propagation speed of the electromagnetic interactions. For the ER, the relativity 

principle that has passed from the GRP to the ERP, is further generalized stating that “all the laws of nature are 

the same in any inertial reference system, independently of its speed coordinate of application”, justified from 

the LTm of the ER, which allows quantization of velocities propagation in electromagnetic interactions. 

In the first place, a theoretical application of the above will be developed, checking the compatibility 

between the LTm equations in the ER, compared with that of the LT equations in the SR [9]. Lorentz 

transformations of m_degree (LTm) defined in the ER, offers solutions of space and time relative to the velocity 

of the physical entity observed, a function in turn of the speed coordinate in which it moves. Thus, it can be 

verified that the LTm is a generalization of the LT used in the SR and, while the LT can only work in the speed 
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0_coordinate, with the LTm observers and physical entities observed in any generic speed coordinate are 

admitted. It is going to be shown that the LTm represents a formal justification of the quantization hypothesis of 

the light speed, compared to the constancy of c supported by the LT of the SR. 

But, can you theoretically justify the use of the quantization hypothesis of the light speed? It is possible 

using the search analogy of the wave equation, where the wave propagation speed appears implicit which, 

traditionally, for any observer in any circumstance is c [10]. In this analogy, the ER from the LTm incorporates 

modifications to the wave equation that allow its generalization, using observers from any speed m_coordinate. 

The result is that the wave propagation velocity measured in a given observation does not depend on the origin 

of the wave, but precisely on the speed coordinate from which the measurement is made. That is, a wave emitted 

from the speed m_coordinate with (m+1)c velocity, will be seen with this same velocity as long as the observer 

belongs to the same speed m_coordinate. 

Is it possible experimentally to observe the velocity quantization of an electromagnetic wave? Yes, it 

will be possible. Two experiments with electromagnetic waves of different shapes (sinusoidal and square) and 

different frequency ranges will be developed, performing spectral analyzes [11, 12] that will provide us data 

compatible with the previous statement. That is, the spectral analysis of the waves harmonics used [13] will be 

compatible with the quantization theory of the speed of light, which represents a real test of its validity. 

 

II. Compatibility Of The Lorentz Transformations For The Speed M_Coordinate 
It is intended to find the degree of compatibility between the Lorentz transformations equations in the 

speed m_coordinate (LTm) developed in the ER, with respect to the one that exists in the LT equations in the 

SR. To do this, two experiments are presented, one based on SR and the other with the principles of ER, 

comparing results. 

Supposed two observers O(x,t) and O’(x’,t’) both moving in the speed 0_coordinate, with relative 

velocity v <c in the direction x, x'. If O emits light in the direction x, x', what speed does this light propagate for 

O and O' with? 

If we have for O, 

𝑥 = 𝑐𝑡             (1) 

That is,   

𝑡 =
𝑥

𝑐
            (2) 

And for O’,  

𝑐′𝑡 ′ = 𝑥′            (3) 

If we use the descriptive equation of time, according to LT in the SR, multiplying by the parameter c, 

we obtain, 

𝑐𝑡 ′ =  𝑐𝑡 −
𝑣𝑥

𝑐
 𝛾0  , with 𝛾0 =  1 −

𝑣2

𝑐2 
−1/2

        (4) 

 Where 0  is the Lorentz factor in the speed  0_coordinate. 

Introducing (1) and (2) in (4),  

𝑐𝑡 ′ =  𝑥 − 𝑣𝑡 𝛾0           (5) 

So, using the descriptive equation of position, according to LT in the SR, in (5) we obtain, 

𝑐𝑡 ′ = 𝑥′            (6) 

And, definitely, comparing (3) with (6), we get,  

𝑐′ = 𝑐            (7) 

In principle, it could be thought that the previous demonstration serves as a justification that c is the 

same and constant for all inertial observers, using LT according to SR. However, let's see what happens if an 

analogous experiment is used, but more generic through the ER. 

Assumed now two observers O(x,t) and O’(x’,t’) both moving on the speed 0_coordinate and the speed 

m_coordinate, respectively, such that the relative velocity between them is v in the direction x, x', being 

mcv<(m+1)c with m>0. The observer O' emits light in the direction x, x' and both O and O' observe and 

measure the propagation velocity of the same. For O, in the speed 0_coordinate, light always propagates with 

velocity c, but what about the observer O'? 

As in the previous case, (1) and (2) are fulfilled for O. While, from the point of view of O’, (3) is 

fulfilled. We will make use of the LTm equations, according to the ER [7], that is, 

𝑥 ′ =   𝑚 + 1 𝑥 − 𝑣𝑡 𝛾𝑚  

𝑦′ = 𝑦 

𝑧 ′ = 𝑧                                         , with  𝛾𝑚 =   𝑚 + 1 2 −
𝑣2

𝑐2 
−1/2

     (8) 

𝑡 ′ =  𝑡 −
𝑣𝑥

 𝑚 + 1 𝑐2
 𝛾𝑚  
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 Where 𝛾𝑚  is the Lorentz factor in the speed m_coordinate.   

If we use the descriptive equation of time, according to LTm in the ER (8), multiplying by the 

parameter (m+1)c, we obtain, 

(𝑚 + 1)𝑐𝑡 ′ =  (𝑚 + 1)𝑐𝑡 −
𝑣𝑥

𝑐
 𝛾𝑚        (9) 

Introducing (1) and (2) in (9),  

(𝑚 + 1)𝑐𝑡 ′ =  (𝑚 + 1)𝑥 − 𝑣𝑡 𝛾𝑚          (10) 

So, using the descriptive equation of position, according to LTm in the ER (8), in (10) we obtain, 

(𝑚 + 1)𝑐𝑡 ′ = 𝑥′            (11) 

And, definitely, comparing (3) with (11), we get,  

𝑐 ′ = (𝑚 + 1)𝑐            (12) 

Which means that even if O is an observer moving with lower speed to c and always measure the light 

with speed c, does not mean that any other observer O' with the possibility of moving with speeds higher than c, 

also measure the light propagation with the same speed. For O' the light propagates according to the speed 

coordinate from where the observer is moving. That is, if O' moves in the speed m_coordinate, the light 

propagates with (m+1)c. 

The LT perfectly fits the SR and its principles: ERP and constancy of c. But, this does not mean that 

the LT justifies the constancy hypothesis of c for every inertial observer. In fact, it is observed with the previous 

demonstrations that there is the same parallelism between the LTm and the ER, which does not mean that these 

transformations fully justify the quantization hypothesis of c. What can be assured is that the quantization of the 

speed of light, as described in (12), justifies the possibility of bodies (observers like O') moving with speeds 

higher than c, without being observed properly by observers like O, who move with speed less than c. 

The problem that results from applying the LT in the SR is that, by imposing the constancy hypothesis 

of c and finding formal justification of it with the transformations themselves, according to (7), the SR is closed 

to other possibilities that, applying LTm in the ER, the latter does offer. Specifically, according to (12) is 

pointed to the relationship between the quantization of the speed of light (variability) and objects moving with 

velocity greater than c, but without being captured with such velocities by observers of the speed 0_coordinate. 

 

III. Wave Equation Study 
Assuming an observer O’(x’,y’,z’,t’) inside a vehicle in a generic speed m_coordinate, moving with 

relative speed v, such that, mcv<(m+1)c with m=0,1,2,3,.., respect to another observer O(x,y,z,t) in the positive 

direction of the x' and x axis. Observer O is in the speed 0_coordinate and the plans '' yx  and xy always match. 

At the origin t’=t=0 (See Fig. 1). 

In the beginning t=0, O emits omnidirectional light with frequency f0 
and wavelength 0 producing a 

spherical wave front that is transmitted with velocity c, origin O and radius r=ct.  

 

 

Fig. 1: Context of the experiment: mcv<(m+1)c with m=0,1,2,3,..,

 

 

The wave emitted in t=0 in the environment with refractive index n, from O in the direction x, x' is 

described by, 

𝑓 𝑥, 𝑡 = 𝐴𝑠𝑒𝑛 𝜔0𝑡 + 𝑛𝐾0𝑥         (13)  

With, 

𝜔0 = 2𝜋𝑓0            (14) 

𝐾0 =
𝜔0

𝑐
            (15) 

𝑛 =
𝑐

𝑠
  and  𝑠 < 𝑐          (16)      

 Where s is the propagation speed in the environment considered. 
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If we define the partial derivatives 
𝜕𝑓  𝑥 ,𝑡 

𝜕𝑥
,
𝜕2𝑓 𝑥 ,𝑡 

𝜕𝑥2  and  
𝜕𝑓  𝑥 ,𝑡 

𝜕𝑡
,
𝜕2𝑓 𝑥 ,𝑡 

𝜕𝑡2  , it is obtained the typical wave 

equation in the direction x, x',  

   
𝜕2𝑓 𝑥 ,𝑡 

𝜕𝑥2 =
1

𝜌𝑂𝑂
2

𝜕2𝑓 𝑥 ,𝑡 

𝜕𝑡2           (17) 

With,  

𝜌𝑂𝑂 =
𝜔0

𝐾0𝑛
=

𝑐

𝑛
 =s          (18) 

Where  OO is the emitted wave speed by O and seen from O .    

We will use the notation AB, where A is the emitter of the light (wave) and B the observer.

 

Now, we will apply relativistic Doppler effect [14]. From O the wave equation can be written as, 

𝜆0𝑓0 = 𝑐             (19) 

 Where 𝜆0 is the wavelength observed from O. 

But, from O’ in the speed_m coordinate the wave equation has the following form, 

𝜆′0𝑓′
0

=  𝑚 + 1 𝑐         (20) 

O’ observes the light with frequency f’0 
and wavelength ’0. As O’ moves going away from O with v, 

𝜆′0 =   𝑚 + 1 𝑐 − 𝑣 𝑇′                                                                   (21) 

Where T’ is the period of the light seen in O’. So, applying dilation time generalization [7], we get, 

𝑇 ′ = 𝑇0𝛾𝑚            (22) 

T0 is the period of the light seen from O and m is the Lorentz factor in the speed_m coordinate (8). 

𝛾𝑚 =   𝑚 + 1 2 − 𝛽2 −1/2    with  
c

v
        (23) 

Introducing (22) and (23) in (21), 

𝜆′0 =
  𝑚+1 𝑐−𝑣 𝑇0

  𝑚+1 2−𝛽2 1/2  
=

  𝑚+1 −𝛽 𝜆0

  𝑚+1 2−𝛽2 1/2  
         (24) 

Substituting wavelengths 𝜆′0 and 𝜆0 in (24) by equivalent frequencies, using (19) and (20), 

𝑓′0

 𝑚+1 𝑐
=

𝑓0

𝑐

  𝑚+1 2−𝛽2 
1/2

 𝑚+1 −𝛽
           (25) 

Rearranging (25) we obtain the results of the relativistic Doppler effect, being the source O and the 

observer O’ in different speed coordinates, 

𝑓′
0

= 𝑓0 𝑚 + 1  
 𝑚+1 +𝛽

 𝑚+1 −𝛽
 

1/2

         (26) 

From O’(x’,y’,z’,t’),  signal 𝑓 𝑥, 𝑡  is seen as one wave 𝑓′ 𝑥′, 𝑡′  defined as follows, 

𝑓′ 𝑥′, 𝑡′ = 𝐴𝑠𝑒𝑛 𝜔′0𝑡 + 𝑛𝐾′0𝑥′         (27) 

𝜔′0 = 2𝜋𝑓′
0

= 2𝜋𝑓0 𝑚 + 1  
 𝑚+1 +𝛽

 𝑚+1 −𝛽
 

1

2
= 𝜔0 𝑚 + 1  

 𝑚+1 +𝛽

 𝑚+1 −𝛽
 

1

2
, with 𝛽 =

𝑣

𝑐
 
   

(28) 

𝐾′0 =
𝜔 ′0

(𝑚+1)𝑐
= 𝐾0  

 𝑚+1 +𝛽

 𝑚+1 −𝛽
 

1/2

          (29) 

Substituting (8) of the Lorentz transformations for speed_m coordinate in (27), with (28) and (29), 

𝑓′ 𝑥, 𝑡 = 𝐴𝑠𝑒𝑛   𝜔0(𝑚 + 1)  𝑡 −
𝑣𝑥

 𝑚+1 𝑐2 + 𝑛𝐾0( 𝑚 + 1 𝑥 − 𝑣𝑡) 
1

 𝑚+1 −𝛽
    (30) 

If we define the partial derivatives 
𝜕𝑓 ′ 𝑥 ,𝑡 

𝜕𝑥
,
𝜕2𝑓′ 𝑥 ,𝑡 

𝜕𝑥2  and  
𝜕𝑓 ′ 𝑥 ,𝑡 

𝜕𝑡
,
𝜕2𝑓′ 𝑥 ,𝑡 

𝜕𝑡2 , it is obtained the wave equation 

in the direction x, x' for the observer O', seeing the light emitted by O, 
𝜕2𝑓′ 𝑥 ,𝑡 

𝜕𝑥2 =
1

𝜌𝑂𝑂 ′
2

𝜕2𝑓′ 𝑥 ,𝑡 

𝜕𝑡2           (31) 

With, 

𝜌𝑂𝑂′ =
𝜔0 𝑚+1 −𝑛𝐾0

−𝜔0 𝑚+1 (𝑣/(𝑚+1)𝑐2)+(𝑚+1)𝑛𝐾0
       (32) 

If we rewrite the equation (32), considering that,  
𝜔 ′0

𝑛𝐾′0
=

𝜔0 𝑚+1 

𝑛𝐾0
= (𝑚 + 1)𝑠           (33) 

We obtain, 

 

𝜌𝑂𝑂′ =

𝜔 0 𝑚 +1 

𝑛𝐾0
−𝑣

(𝑚+1)−
𝜔 0 𝑚 +1 𝑣

(𝑚 +1)𝑐2𝑛𝐾0

=
𝑠 𝑚+1 −𝑣

 𝑚+1 −
𝑣

𝑠

=
𝑠(𝑠 𝑚+1 −𝑣)

𝑠 𝑚+1 −𝑣
= 𝑠, ∀𝑚      (34) 

Equation (34) applied in a vacuum, where s=c, means that from O' the light wave is seen with speed 

𝜌𝑂𝑂′ = 𝜌𝑂𝑂 = 𝑐. In other different environments, 𝜌𝑂𝑂′ = 𝑠
 
. 

If the wave is emitted by O' , the observer O' would see it propagating with speed 𝜌𝑂´𝑂´.  
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If we define the partial derivatives 
𝜕𝑓 ′ 𝑥′,𝑡′ 

𝜕𝑥 ′
,
𝜕2𝑓′ 𝑥′,𝑡′ 

𝜕𝑥′
2  and  

𝜕𝑓 ′ 𝑥′,𝑡′ 

𝜕𝑡 ′
,
𝜕2𝑓′ 𝑥′,𝑡′ 

𝜕𝑡 ′2 , over (27), it is obtained the 

propagating speed 𝜌𝑂´𝑂´ of the wave in the direction x, x' for the observer O', seeing the light emitted by O’, 

𝜌𝑂´𝑂´ =   

𝜕2𝑓 ′ 𝑥 ′,𝑡 ′ 

𝜕𝑡 ′
2

𝜕2𝑓 ′ 𝑥 ′,𝑡 ′ 

𝜕𝑥 ′
2

 

1/2

=
𝜔´0

𝑛𝐾 ´0
=

𝜔0 𝑚+1 

𝑛𝐾0
= 𝑠 𝑚 + 1   , ∀𝑚           (35) 

Finally, let's consider how the situation is described when O' emits the light and is observed by O. 

Equations (8) can be written for x and t, such as: 

𝑥 =

𝑥 ′

𝛾𝑚
+𝑣𝑡

𝑚+1
  

𝑡 =
𝑡´

𝛾𝑚
+

𝑣𝑥

(𝑚+1)𝑐2                                               (36) 

Which rearranged, give rise to (37), 

𝑥 =
𝑥′

(𝑚+1)𝛾𝑚
+

𝑣𝑡′

(𝑚+1)𝛾𝑚
+ 𝑥

𝑣2

(𝑚+1)2𝑐2     𝑥  1 −
𝑣2

(𝑚+1)2𝑐2 =
𝑥′+𝑣𝑡′

(𝑚+1)𝛾𝑚
  𝑥 = (𝑚 + 1)𝛾𝑚  𝑥′ + 𝑣𝑡′          

𝑡 =
𝑡′

𝛾𝑚
+

𝑣𝑥′

𝛾𝑚 (𝑚+1)2𝑐2 + 𝑡
𝑣2

(𝑚+1)2𝑐2  𝑡  1 −
𝑣2

(𝑚+1)2𝑐2 =
𝑡′

𝛾𝑚
+

𝑣𝑥′

𝛾𝑚 (𝑚+1)2𝑐2   𝑡 = 𝛾𝑚  (𝑚 + 1)2𝑡′ + 𝑥′
𝑣

𝑐2      

The light emitted by O' is seen by O in the x-direction as a wave 𝑓 𝑥′, 𝑡′  described as follows, 

substituting in (13), equations (28), (29) and (37), 

𝑓 𝑥′, 𝑡′ = 𝐴𝑠𝑒𝑛   
𝜔´0

𝑚+1
  𝑚 + 1 2𝑡′ + 𝑥′

𝑣

𝑐2 + 𝑛𝐾′0 𝑚 + 1  𝑥′ + 𝑣𝑡′  
1

 𝑚+1 +𝛽
    (37) 

Then the light from O is seen propagating with speed, 

 𝜌𝑂´𝑂 =   

𝜕2𝑓 𝑥 ′,𝑡 ′ 

𝜕𝑡 ′
2

𝜕2𝑓 𝑥 ′,𝑡 ′ 

𝜕𝑥 ′
2

 

1

2

=
𝜔 ′

0
𝑚 +1

 𝑚+1 2+𝑛𝐾0
′  𝑚+1 𝑣

𝜔 ′
0

(𝑚 +1)

𝑣

𝑐2+𝑛𝐾0
′  𝑚+1 

=                

                             =

𝜔 ´0

𝑛𝐾 0
′
 𝑚+1 + 𝑚+1 𝑣

𝜔 ´0

(𝑚 +1)𝑛𝐾0
′

𝑣

𝑐2+ 𝑚+1 
=

 𝑚+1 2𝑠+(𝑚+1)𝑣
𝑣

𝑠
+(𝑚+1)

=
  𝑚+1 𝑠+𝑣 𝑠

 𝑚+1 𝑠+𝑣
= 𝑠  , ∀𝑚            (38)  

In conclusion: 

 Regardless of the speed coordinate where the observer is, (18) with observer O and (34) with observer O’, 

the wave emitted from the speed 0_coordinate is always propagated at velocity s (in the vacuum, s=c). 

OO=OO’=s,  m         (39) 

 But also, O’O=s,m. What corroborates the hypothesis about quantization of light, unobservable from the 

speed 0_coordinate, where always light propagates with speed s. Equation (38) tells us that although the light 

propagates in the speed m_coordinate with velocity (m+1)s, from the speed 0_coordinate the observer O 

sees it at velocity s (in a vacuum, cs  ). 

 However, O’O’=(m+1)s,m. That is, from the speed m_coordinate light propagating at velocity (m+1)s, is 

seen with this same real velocity (35). 

 

IV. Theory About Harmonic Spectral Analysis Experiments 
A spectrum analyzer is calibrated in amplitude by injecting it with an amplitude signal that is known 

with great accuracy, using a given reference frequency. For this, a signal is generated controlled in voltage (or 

power) and frequency of the least possible distortion, using the same output impedance as the input to the 

analyzer. Thus, we make sure that the generated control signal concentrates practically all its power in the 

fundamental harmonic, since for a practical distortion close to zero the power absorbed by higher order 

harmonics is negligible, compared to that of the fundamental harmonic, even for small level signals. The 

amplitude of the signal displayed at the control frequency (that of the fundamental harmonic) is adjusted in the 

analyzer with the known control amplitude value. 

Let's now assume that we generate any signal with power P over 50Ω impedance. It is injected into a 

spectrum analyzer with the same input impedance trying to determine its power, named as P', as well as to what 

extent it differs from that of the generator, that is, the power difference (P-P'). 

Considering the signal composed of harmonics, in fact, by the sum of (j+1) significant harmonics [15], 

we have that the input power P to the analyzer can be defined as, 

𝑃 = 𝑃0 + 𝑃1 + 𝑃2+. . +𝑃𝑗 =  𝑃𝑖
𝑗
𝑖=0        (40) 

P0 is the fundamental harmonic power and Pi the power of the generic i harmonic, with i=0,1,.., j. 

The power of the signal with frequency f which for each cycle displaces n particles associated with an 

energy E [16], can be described as, 

𝑃 =
𝐸

𝑡
=

𝑛ℎ 𝑓

𝑇
= 𝑛ℎ 𝑓2 = 𝑛𝐾  , with 𝐾 = ℎ 𝑓2 and 𝑇 = 1/𝑓       (41) 

 Where the signal of frequency f has period T, associated with n particles, being h the Planck’s constant. 
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The input power P generated to the spectrum analyzer is distributed in harmonics [17], each associated 

with a number of specific particles, whose energy is a function of the harmonic frequency. Thus, from the 

analyzer by tuning the central frequency f, the power signal P is obtained distributed in j significant harmonics 

of individual powers P0, P1, .., Pj, which in turn displace n0, n1, .., nj particles, respectively, such that for each Pi 

input to the analyzer and considering speed 0_coordinate reference, you have, 

𝑃𝑖 = 𝑛𝑖ℎ 𝑓𝑖𝑓  with  𝑃0 = 𝑛0𝐾  , 𝑃1 = 2𝑛1𝐾 , ….., 𝑃𝑗 =  1 + 𝑗 𝑛𝑗𝐾      (42) 

Observe that the energy Ei of each power harmonic Pi, such that, 

𝑃𝑖 = 𝐸𝑖𝑓           (43) 

It takes the following value, 

𝐸𝑖 = 𝑛𝑖ℎ 𝑓𝑖   with 𝑖 = 0,1, . . , 𝑗          (44) 

That is, the ni particles associated with each harmonic of frequency fi can be captured as (1+i)ni 

particles at frequency f, since their energy described in (44) can also be set as, 

𝐸𝑖 =  1 + 𝑖 𝑛𝑖ℎ 𝑓  with 𝑖 = 0,1, . . , 𝑗   and    𝑓𝑖 =  1 + 𝑖 𝑓     (45) 

Now, the speed coordinate quantization theory establishes that the wavelength  of each i harmonic of 

frequency fi is the same, when using a propagation velocity of (i+1)c in each of them [7]. Therefore, the 

generated power Pi supplied to each harmonic containing energy Ei is applied over a period Ti, such that, 

𝑃𝑖 =
𝐸𝑖

𝑇𝑖
  with  𝑖 = 0,1, . . , 𝑗          (46) 

That is, (46) substitutes (43), with relative reference to each i harmonic, so that, 

 𝑖 + 1 𝑐 =
𝜆

𝑇𝑖
            (47) 

And how, 

𝑐 =
𝜆

𝑇
             (48) 

If T is the period associated with the signal frequency f, then, combining (47) and (48), 

𝑇𝑖 =
𝑇

𝑖+1
            (49) 

So, by entering (49) in (46) and using (45), you get, 

𝑃𝑖 =
𝐸𝑖(𝑖+1)

𝑇
= 𝐸𝑖(𝑖 + 1)𝑓 = 𝑛𝑖 𝑖 + 1 2𝐾        (50) 

Therefore, (50) substitutes (42), now being the relative reference to each i harmonic. Therefore, by 

applying the speed coordinate quantization theory, signal generation is associated with the following power 

distribution P, 

𝑃 =  𝑃𝑖
𝑗
𝑖=0 = 𝐾 𝑛0 + 4𝑛1 + 9𝑛2+. . + 1 + 𝑗 2𝑛𝑗 = 𝑛𝐾  ,  with  𝑛 =   1 + 𝑖 2𝑛𝑖

𝑗
𝑖=0     (51) 

On the other hand, in practice it is possible to differentiate between the harmonic distribution of the 

generated power P (Fig.2) and the power measurement in each of these harmonics Pi’ with the spectral analysis 

(Fig.3), such that, the total spectral measurement P' is obtained as follows, 

𝑃′ =  𝑃′𝑖
𝑗
𝑖=0            (52) 

Experimentally, it is observed that the input power P generated does not match with the measured 

power P' after the spectral analysis, so that, 

P>P’           (53) 

 

Fig. 2: Power P harmonic distribution generated at the spectrum analyzer input, with reference to each i 

harmonic. 

 

 The result of the image in Fig. 3 is obtained by applying the following considerations, 

1. At the input to the analyzer, the power P is distributed according to (51) with relative reference to each i 

harmonic. That is, P0 for the 0 harmonic in the speed 0_coordinate, P1 for the 1 harmonic in the speed 

1_coordinate, and so on. 
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But it turns out that the experimental spectral measurements indicate that P>P’, because they are made in 

the speed 0_coordinate, that is, all of them with reference to the fundamental 0 harmonic. 

 

              

Fig. 3: Harmonic distribution of the power P’ measured with the spectral analysis and speed 0_coordinate 

reference.

 

 

2. Using the speed coordinate quantization theory, trying to solve the previous situation, you get: 

a. Each i harmonic and its associated particles ni move to (i+1)c velocity. 

b. When measuring by tuning in the frequency f with reference to the speed 0_coordinate in the 

fundamental harmonic, we observe the contribution of P0 with n0 particles, but also the contribution of 

the rest of the higher order harmonics, as if they were moving at velocity c, that is, with P1, P2, .., Pj. 

The total power observed in the fundamental harmonic contribution from all the harmonics, not only 

from the fundamental, is what has been named as P0’ associated to n’0 particles. Thus, it is obtained as 

a spectral measure in the fundamental harmonic, 

𝑃′0 = 𝑛′0𝐾                (54) 

Where the number of particles 𝑛′0 associated with the power 𝑃′0  is, 

𝑛′0 =  𝑛0 + 2𝑛′1 + 3𝑛′2+. . + 1 + 𝑗 𝑛′𝑗         (55) 

c. Regarding the higher order harmonics measured spectrally from the speed 0_coordinate, taking as 

reference the fundamental harmonic, they give rise to individual powers P’1, .., P’j which in turn 

displace n’1, .., n’j particles, respectively, such that, for each P’i measured in the analyzer, we have, 

𝑃′𝑖 = 𝑛′𝑖ℎ 𝑓𝑖𝑓  , such that i=0,1,..,j, with  𝑃′0 = 𝑛′0𝐾  , 𝑃′1 = 2𝑛′1𝐾 , .., 𝑃′𝑗 =  1 + 𝑗 𝑛′
𝑗
𝐾  (56) 

Therefore, the spectral analysis provides the following power distribution P', 

𝑃′ =  𝑃𝑖 ′
𝑗
𝑖=0 = 𝐾 𝑛′0 + 2𝑛′1 + 3𝑛′2+. . + 1 + 𝑗 𝑛′𝑗    with  𝑛′ =   1 + 𝑗 𝑛′

𝑖
𝑗
𝑖=0     (57) 

 Introducing (55) in (57), it is achieved, 

𝑃′ = 𝑛′𝐾 = 𝐾 𝑛0 + 2 2𝑛′1 + 3𝑛′2+. . + 1 + 𝑗 𝑛′𝑗           (58) 

 Where n' is the total particles number associated with the total power P' measured spectrally. 

3. On the other hand, what is the relationship between particles ni distributed in each harmonic by the 

generated input signal and the number of particles n’i observed in each harmonic with the spectral analysis? 

a. At the frequency of the fundamental harmonic, n’0 particles are observed, whose value is given by (55). 

That is, it is the contribution from the fundamental harmonic with n0 particles at frequency f, but also 

the rest one from the higher order harmonics observed as n’1, n’2, ..,n’j, at frequencies f1, f2, .., fj, 

respectively, where the fi/T parameter at the speed 0_coordinate used in the observation gives rise to 

2f
2
, 3f

2
, .., (1+j)f

2
, respectively. 

b. In the higher order harmonics we can observe  1 + 𝑖 𝑛′𝑖  particles for each i harmonic associated to 

each frequency fi=(i+1)f, with temporal reference T (the measurements are at the speed 0_coordinate). 

Since the particles distributed in each higher order harmonic by the input signal take values   1 + 𝑖 𝑛𝑖  

or for each frequency fi with reference to T(f), then the measurement observed with reference to each fi 

is also  1 + 𝑖 𝑛𝑖 . Therefore, considering the definition of n' obtained with the spectral observation by 

(57), it is concluded that, 

𝑛′𝑖 = 𝑛𝑖  , ∀𝑖 > 0           (59) 

Relating the powers described in (51) with the measurements according to (57), 

 
𝑃′

𝑃
=

𝑛 ′

𝑛
             (60) 

Thus, using the definition of n in (51) and that of n' in (57) with (59) and introducing them in (60), 

For each i harmonic: 

- ni  particles generated, according to the 

power distribution P of the input signal. 

- n’i particles measured by spectral 

analysis for power P'. 



Light Velocity Quantization and Harmonic Spectral Analysis 

DOI: 10.9790/4861-1004025771                                     www.iosrjournals.org                                         64 | Page 

𝑃′

𝑃
=

𝑛 ′0+2𝑛 ′1+3𝑛 ′2+..+ 1+𝑗  𝑛 ′𝑗

𝑛0+4𝑛1+9𝑛2+..+ 1+𝑗  2𝑛𝑗
=

𝑛0+2 2𝑛1+3𝑛2+..+ 1+𝑗  𝑛𝑗  

𝑛0+4𝑛1+9𝑛2+..+ 1+𝑗  2𝑛𝑗
=

𝑛0+2   1+𝑖 𝑛𝑖
𝑗
𝑖=0

  1+𝑖 2𝑛𝑖
𝑗
𝑖=0

       (61) 

Giving place, with respect to each harmonic, to the following power relationships, 

𝑃′0

𝑃0
=

  1+𝑖 𝑛𝑖
𝑗
𝑖=0

𝑛0
             (62) 

𝑃′1

𝑃1
=

1

2
    ,  

𝑃′2

𝑃2
=

1

3
  , ..         (63) 

𝑃′𝑗

𝑃𝑗
=

1

(1+𝑗 )
 , ∀𝑗 > 0            (64) 

 The observation expressed in (53) can be quantized in the form of a power difference D, between the 

generation P distributed into different speed coordinates and the observed P' measured from the speed 

0_coordinate. Using (51), (58) and (59), you get, 

𝐷 = 𝑃 − 𝑃′ = 𝐾 3𝑛2 + 8𝑛3+. . +  1 + 𝑗 2 − 2 1 + 𝑗  𝑛𝑗  = 𝐾    1 + 𝑖 2 − 2 1 + 𝑖  𝑛𝑖
𝑗
𝑖=2   (65) 

 On the other hand, it is also important to express the power difference between the fundamental 

harmonics, measured with power P’0 and generated with power P0. Thus, using (51), (54), (55) and (59), D0 is 

obtained, 

𝐷0 = 𝑃′0 − 𝑃0 = 𝐾 2𝑛1 + 3𝑛2+. . + 1 + 𝑗 𝑛𝑗 = 𝐾  (1 + 𝑖)𝑛𝑖
𝑗
𝑖=1      (66) 

 So, according to (65) and (66), in the power differences D and D0, the value of the fundamental 

harmonic does not intervene, and in D, neither that of the first higher order harmonic. This means the following: 

 For signals of the same level and frequency, D and D0 will be greater, the greater the distortion; that is, 

comparing a square signal with a sinusoidal one with both same frequency and level, the square one must 

produce higher D and D0. 

 On the other hand, in the values of D and D0, the parameter K also influences, function of f
2
, therefore, for 

the same signal shape and level, the higher frequency, D and D0 will be greater. 

In addition, it is concluded that: 

 The definition of D according to (65) explains why in practice it is detected that P> P' (53), so that its 

numerical value is influenced by the signal shape (degree of distortion) and frequency. 

 The definition of D0 according to (66) determines that P’0>P0, so that, the fundamental harmonic observed 

has always more power than the fundamental harmonic generated. 

 

V. Experiment1 
The aim is to perform a spectral analysis of a sinusoidal signal generated at different frequencies and 

with an unique level. With the spectral analysis it is possible to measure harmonic powers and their sum is 

compared with the power of the generated input signal. In addition, the power of the fundamental harmonic 

measured will be compared with respect to the calculated theoretical one. The number of particles n' and n are 

defined, associated with measured powers and theoretical powers, respectively. 

An unique generator of very low distortion sinusoidal signals [18] will be used for all measurements. 

The precision level of the experiment is given by the first ten harmonics measurement of each signal (except in 

250MHz, where only six harmonics are used). Thus, the power distribution measured with respect to each signal 

of frequency f, up to 100MHz, will be 𝑃′0 , 𝑃′1 , . . , 𝑃′9 , in f, 2f,..,10f,  respectively. 

The powers obtained applying (40) and (51), on the one hand and, (57) on the other hand, are, 

𝑃 ≈  𝑃𝑖
9
𝑖=0 = 𝐾 𝑛0 + 4𝑛1 + 9𝑛2+. . +100𝑛9          (67) 

𝑃′ ≈  𝑃𝑖 ′
9
𝑖=0 = 𝐾 𝑛′0 + 2𝑛′1 + 3𝑛′2+. . +10𝑛′9         (68) 

 Where P is the input power and P’ is the measured power. 

That is, using (55) and (59) in (68), 

𝑃′ ≈ ℎ 𝑓2 𝑛0 + 2𝑛1+. . +10𝑛9 + ℎ 𝑓1𝑓1𝑛1+. . +ℎ 𝑓9𝑓9𝑛9 = 𝐾 𝑛0 + 2 2𝑛1 + 3𝑛2+. . +10𝑛9        (69) 

 Where n' and n are the total particles number associated with the powers of the generated input signal 

and the measured analyzed signal, respectively, defined as, 

𝑛′ =   1 + 𝑗 𝑛′
𝑖

9
𝑖=0 =𝑛′0 + 2𝑛′1+. . +10𝑛′9 = 𝑛0 + 4𝑛1 + 6𝑛2+. . +20𝑛9   (70) 

𝑛 =   1 + 𝑖 2𝑛𝑖
9
𝑖=0 = 𝑛0 + 4𝑛1 + 9𝑛2+. . +100𝑛9      (71) 

Sinusoidal inputs with 50Ω impedance will be always applied to the Rigol DSA815TG spectrum 

analyzer [19] at different frequencies and amplitude of 317mVrms (3dBm). Selective level measurements will be 

carried out in “zero scan” mode, where the analyzer functions as a heterodyne receiver with selectable 

bandwidth, through the center frequency. Power measurements of the first ten harmonics referred to 50Ω 

impedance are obtained. 

We will use a system of eleven equations described by the ten measurements taken plus the equation 

corresponding to the input power (for 250MHz are only seven equations), that is, 
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𝑃′
0 =  𝑛0 + 2𝑛1 + 3𝑛2+. . +10𝑛9 + 11𝑛10 𝐾       (72) 

𝑃′1 = 2𝑛1𝐾 

…… 

𝑃′9 = 10𝑛9 

𝑃 =  𝑛0 + 4𝑛1 + 9𝑛2+. . +100𝑛9 + 121𝑛10 𝐾  

 

 The unknowns are ten ni for i=0,1,..,9, which multiplied by the coefficient K(i+1)
2
 provide the input 

power value of each Pi for i=0,1,..,9. 

 The number eleven unknown n10 is associated with the rest power of the higher order harmonics from 

the tenth of the input signal. That is, P10 is not the tenth harmonic power but the rest power of the higher order 

harmonics not considered after the tenth, including this one.  

We will name P10 as the rest input power for frequencies up to 100MHz: 

𝑃𝑟𝑒𝑠𝑡 = 𝑃10 = 121𝑛10𝐾         (73) 

With the particles number ni associated with each harmonic of frequency fi, we can obtain P’. From P' 

and, since P has an imposed value (3dBm), the power difference between the input P (with n particles) and the 

measured power P' (with n' particles) (65) is determined. Also from P0 and 𝑃′
0 , the difference D0 (66) is 

achieved. 

The results obtained are shown in Table1 and Table2. 

 

Table 1: Data and results of the experiment1 from 50KHz to 1MHz. 
f0/P(dBm,µw)/THD/ K=hf0

2/(RBW) 50KHz / (3dBm, 2010µw) / 0.27% / 16.565 10-25w / (300Hz) 

P0’  
µw/dBm 

P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1506.61/ 
1.78dBm 

8.71/ 
-50.6dBm 

2/ 
-56.99dBm 

0.048/ 
-73.18dBm 

0.099/ 
-70.03dBm 

0.026/ 
-75.84dBm 

0.025/ 
-75.98dBm 

0.021/ 
-76.78dBm 

0.026/ 
-75.82dBm 

0.015/ 
-78.21dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 

n7K(nw)

/P7(nw) 

n8K(nw)

/P8(nw) 

n9K(nw)

/P9(nw) 

n10K(µw)/ 

P10(µw) 

1456.26/ 

1456.26 

4.355/ 

17.42 

0.667/ 

6 

0.012/ 

0.192 

0.0198/ 

0.495 

0.0043/ 

0.1560 

0.00357/ 

0.1750 

0.00263/ 

0.1680 

0.0029/ 

0.2340 

0.0015/ 

0.15 

4.576/ 

553.72 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+10.97nw=1506.611 503.39 50.35 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 100KHz / (3dBm, 2010µw) / 0.25% / 6.626 10-24w / (300Hz) 

P0’ 
  µw/dBm 

P1’ 
 nw/dBm 

P2’ 
nw/dBm 

P3’ 
nw/dBm 

  P4’ 
nw/dBm 

P5’ 
nw/dBm 

P6’ 
nw/dBm 

P7’ 
nw/dBm 

P8’ 
nw/dBm 

P9’ 
nw/dBm 

1570.36/ 

1.96dBm 

7.853/ 

-51.05dBm 

1.663/ 
-57.79dBm 

0.020/ 

-77.06dBm 

0.029/ 

-75.37dBm 

0.018/ 

-77.48dBm 

0.025/ 

-76.05dBm 

0.014/ 

-78.42dBm 

0.019/ 

-77.13dBm 

0.015/ 

-78.33dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 
n3K(nw)/ 

P3(nw) 
n4K(nw)/ 

P4(nw) 
n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 
n7K(nw)

/P7(nw) 
n8K(nw)

/P8(nw) 
n9K(nw)

/P9(nw) 
n10K(µw)/ 

P10(µw) 

1526.39/ 

1526.39 

3.927/ 

15.706 

0.554/ 

4.989 

0.005/ 

0.08 

0.0058/ 

0.145 

0.003/ 

0.108 

0.0036/ 

0.1750 

0.00175/ 

0.112 

0.0021/ 

0.171 

0.0015/ 

0.15 

3.997/ 

483.59 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+9.656nw=1570.37 439.63 43.97 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 1MHz / (3dBm, 2010µw) / 0.21% / 6.626 10-22w / (3KHz) 

P0’ 

  µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1462.18/ 

1.65dBm 

5.24/ 

-52.81dBm 

0.5370/ 
-62.70dBm 

0.0755/ 

-71.22dBm 

0.1368/ 

-68.64dBm 

0.0603/ 

-72.20dBm 

0.1439/ 

-68.42dBm 

0.0526/ 

-72.79dBm 

0.0918/ 

-70.37dBm 

0.0468/ 

-73.30dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 

n7K(nw)

/P7(nw) 

n8K(nw)

/P8(nw) 

n9K(nw)

/P9(nw) 

n10K(µw)/ 

P10(µw) 

1407.40/ 

1407.40 

2.62/ 

10.48 

0.179/ 

1.611 

0.0189/ 

0.302 

0.0274/ 

0.684 

0.0101/ 

0.3618 

0.0206/ 

1.007 

0.0066/ 

0.4208 

0.0102/ 

0.8262 

0.00468/ 

0.468 

4.98/ 

602.59 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+6.386nw=1462.19 547.81 54.78 

 

Table3 shows the results processed that give rise to the following conclusions: 

 For the same signal level, the power difference D of the input power with respect to the measurement 

increases with the frequency increase, in general. Increasing the frequency with a sufficient decrease of the 

THD can cause the power difference D decreasing. 

 The conclusions obtained for the power difference D0 between the measured fundamental harmonic and the 

input fundamental harmonic are the same as for D. In general, the increase in frequency for the same signal 

level and progressive increments of THD produces an increase in D0. 

 For the same signal level, the D/P and D0/P0’ ratios in percentage increase with the increase in frequency, in 

general, as long as THD increments are maintained. 



Light Velocity Quantization and Harmonic Spectral Analysis 

DOI: 10.9790/4861-1004025771                                     www.iosrjournals.org                                         66 | Page 

Table 2: Data and results of the experiment1 from 10MHz to 250MHz. 
f0/P(dBm,µw)/THD/ K=hf0

2/(RBW) 10MHz / (3dBm, 2010µw) / 0.19% / 6.626 10-20w / (30KHz) 

P0’ 

  µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1472.31/ 

1.68dBm 

0.3606/ 

-64.43dBm 

3.013/ 

-55.21dBm 

0.3412/ 

-64.67dBm 

0.2818/ 

-65.50dBm 

0.2897/ 

 -65.38dBm 

0.3006/ 

-65.22dBm 

0.3133/ 

-65.04dBm 

0.3296/ 

-64.82dBm 

0.3243/ 

-64.89dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 
n3K(nw)/ 

P3(nw) 
n4K(nw)/ 

P4(nw) 
n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 
n7K(nw)

/P7(nw) 
n8K(nw)

/P8(nw) 
n9K(nw)

/P9(nw) 
n10K(µw)/ 

P10(µw) 

1418.54/ 

1418.54 

0.1803/ 

0.7212 

1.0043/ 

  9.040 

0.0853/ 

1.3648 

0.05636/ 

1.409 

0.04828/ 

1.7382 

0.0429/ 

2.1042 

0.03916/ 

2.5064 

0.0366/ 

2.9664 

0.0324/ 

3.243 

4.888/ 

591.44 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+5.54nw=1472.32 537.50 53.77 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 50MHz / (3dBm, 2010µw) / 0.88% / 16.565 10-19w / (100KHz) 

P0’ 

  µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1406.05/ 

1.48dBm 

8.8105/ 

-50.55dBm 

84.918/ 

-40.71dBm 

2.3659/ 

-56.26dBm 

1.9231/ 

-57.16dBm 

1.8281/ 

-57.38dBm 

2.0324/ 

-56.92dBm 

2.2029/ 

-56.57dBm 

2.2909/ 

-56.40dBm 

2.2962/ 

-56.39dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 
n3K(nw)/ 

P3(nw) 
n4K(nw)/ 

P4(nw) 
n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 
n7K(nw)

/P7(nw) 
n8K(nw)

/P8(nw) 
n9K(nw)

/P9(nw) 
n10K(µw)/ 

P10(µw) 

1345.57/ 

1345.57 

4.40525/ 

17.621 

28.306/ 

254.754 

0.5915/ 

9.4636 

0.38462/ 

9.6155 

0.30468/ 

10.9686 

0.29034/ 

14.227 

0.2754/ 

17.623 

0.2545/ 

20.618 

0.2296/ 

22.962 

5.488/ 

664.05 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+108.67nw=1406.16 603.85 60.48 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 100MHz / (3dBm, 2010µw) / 0.49% / 6.626 10-18w / (300KHz) 

P0’ 
  µw/dBm 

P1’ 
 nw/dBm 

P2’ 
nw/dBm 

P3’ 
nw/dBm 

  P4’ 
nw/dBm 

P5’ 
nw/dBm 

P6’ 
nw/dBm 

P7’ 
nw/dBm 

P8’ 
nw/dBm 

P9’ 
nw/dBm 

1402.81/ 
1.47dBm 

11.2719/ 
-49.48dBm 

6.9024/ 
-51.61dBm 

1.86209/ 
-57.30dBm 

1.803/ 
-57.44dBm 

1.766/ 
-57.53dBm 

1.875/ 
-57.27dBm 

2.1928/ 
-56.59dBm 

2.65461/ 
-55.76dBm 

2.729/ 
-55.64dBm 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(nw)

/P6(nw) 

n7K(nw)

/P7(nw) 

n8K(nw)

/P8(nw) 

n9K(nw)

/P9(nw) 

n10K(µw)/ 

P10(µw) 

1342.07/ 

1342.07 

5.636/ 

22.544 

2.3008/ 

20.7072 

0.46552/ 

7.44836 

0.3606/ 

9.015 

0.2943/ 

10.596 

0.2679/ 

13.125 

0.2741/ 

17.5424 

0.295/ 

23.8915 

0.2729/ 

27.29 

5.519/ 

667.78 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+33.05nw=1402.84 607.1 60.74 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 250MHz / (3dBm, 2010µw) / 0.76% / 414.125 10-19w / (300KHz) 

P0’ 

  µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 

Only six harmonics are used for 250MHz, due to 

analyzer limitations  

1358.31/ 
1.33dBm 

41.8794/ 
-43.78dBm 

22.4906/ 
-46.48dBm 

4.3551/ 
-53.61dBm 

4.42588/ 
-53.54dBm 

6.223/ 
-52.06dBm 

1.5GHz analyzer bandwidth 

n0K(µw)/

P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(µw)/

P6(µw) 

 

1249.64/ 

1249.64 

20.9397/ 

83.7588 

7.4969/ 

67.4718 

1.08878/ 

17.4204 

0.8852/ 

22.1294 

1.03717/ 

37.338 

15.51/ 

760.13 
𝑃𝑟𝑒𝑠𝑡 = 𝑃6 = 49𝑛6𝐾 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+79.38nw=1358.39 651.5 108.67 

 

 The values of D obtained are appreciable and measurable with a spectrum analyzer, even when the higher 

order harmonics power is negligible compared to that from the fundamental harmonic, despite the low 

distortion of the sinusoidal input signals. Even the power difference D0, corresponding to the fundamental 

harmonics, is already appreciable. 

 In a generic way, with the same signal generator for the same level and type of signal, the distortion 

increases with the frequency and, thus, the powers in the fundamental harmonic P0 and P0’ decrease, since 

the associated particles number n0 y n0’ also decrease. 

 The ni and Pi values for i=0,1,..,j, (in this experiment j=9 for all frequencies used, except for 250MHz 

where j=5) are obtained by means of a system with (j+2) equations that offers more precise results, the 

more amount of harmonics it contains (the greater is j). Observe that in the i harmonic there are ni particles 

associated with the input power Pi, such that, 

𝑃𝑖 = 𝐾𝑛𝑖(1 + 𝑖)2    with  i=0,1,..,j        (74) 

 While the power measured in each i harmonic is given by Pi', 

𝑃𝑖 ′ = 𝐾𝑛𝑖(1 + 𝑖)  with   i=0,1,..,j        (75) 

The results indicate that the greater the i harmonic considered, the smaller the particles number ni; however, 

input power Pi injected increases with respect to its Pi' measured, which decreases. There comes a time when 

Pi' measured reaches the noise level of the spectrum analyzer and, from here, the measurements are not 

valid. That is, the analyzer noise level limits the value of j used. For the value of j used in the measurements, 

we will obtain a Pj representing the power accumulation distributed to the harmonics above j
th

, including this 
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one. It is what we have named in (73) as rest input power 𝑃𝑟𝑒𝑠𝑡 , which is expressed generically for the j
th

 

harmonic as, 

𝑃𝑟𝑒𝑠𝑡 = 𝑃𝑗 = 𝐾𝑛𝑗 (1 + 𝑗)2         (76) 

The signal generator used Hameg HM8134 uses as internal reference 10MHz and, therefore, it is in this 

frequency where better results are obtained in terms of THD, which is noted in the value of D/P%. 

 

Table 3: Processing and results summary of the experiment1. 
Results Summary (3dBm) Experiment1 

f0/THD D(µw) D0(µw) D/P % D0/P0’ % 

50KHz/0.27% 503.39 50.35 25.04 3.34 

100KHz/0.25% 439.63 43.97 21.87 2.80 

1MHz/0.21% 547.81 54.78 27.25 3.75 

10MHz/0.19% 537.5 53.77 26.74 3.65 

50MHz/0.88% 603.85 60.48 30.04 4.30 

100MHz/0.49% 607.10 60.74 30.20 4.33 

250MHz/0.76% 651.50 108.67 32.41 8.00 

 

VI. Experiment2 
A comparative spectral analysis will now be carried out using signals generated at different frequencies 

and an unique effective value with sinusoidal and square shapes. The spectral measurements for each frequency 

provide different power distributions, taking into account the different distortion when comparing sine and 

square signals. 

 

Table 4: Data and results of the experiment2 from 50KHz to 10MHz for sinusoidal signals. 
f0/P(dBm,µw)/THD/ K=hf0

2/(RBW) 50KHz / (3dBm, 2010µw) / 0.24% / 16.565 10-25w / (300Hz) 

P0’  
µw/dBm 

P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1472.31/ 

1.68dBm 

6.761/ 

-51.70dBm 

1.652/ 
   -57.82dBm 

0.043/ 

-73.69dBm 

0.046/ 

-73.35dBm 

0.022/ 

-76.68dBm 

0.018/ 

-77.38dBm 

0.016/ 

-77.88dBm 

0.014/ 

-78.42dBm 

0.012/ 

-79.12dBm 

n0K(µw)

/P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 
n3K(nw)/ 

P3(nw) 
n4K(nw)/ 

P4(nw) 
n5K(nw)/ 

P5(nw) 

 n6K(nw)/    

P6(nw) 
n7K(nw)/

P7(nw) 
n8K(nw)

/P8(nw) 
n9K(nw)/

P9(nw) 
n10K(µw)/ 

P10(µw) 

1418.53/ 

1418.53 

3.3805/ 

13.522 

0.5507/ 

4.956 

0.01075/ 

0.172 

0.0092/ 

0.23 

0.0037/ 

0.1320 

0.00257/ 

0.1260 

0.002/ 

0.128 

0.0016/ 

0.126 

0.0012/ 

0.12 

4.89/ 

591.45 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+8.584nw=1472.319 537.68 53.785 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 100KHz / (3dBm, 2010µw) / 0.24% / 6.626 10-24w / (300Hz) 

P0’ 

 µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1496.24/ 
1.75dBm 

6.966/ 
-51.57dBm 

1.626/ 
-57.89dBm 

0.023/ 
-76.41dBm 

0.037/ 
-74.37dBm 

0.016/ 
-77.98dBm 

0.018/ 
-77.57dBm 

0.014/ 
-78.51dBm 

0.019/ 
-77.13dBm 

0.015/ 
-78.38dBm 

n0K(µw)

/P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(nw)/

P6(nw) 

n7K(nw)/

P7(nw) 

n8K(nw)/

P8(nw) 

n9K(nw)/

P9(nw) 

n10K(µw)/ 

P10(µw) 

1444.86/ 
1444.86 

3.483/ 
13.932 

0.542/ 
4.878 

0.00575/ 
0.092 

0.0074/ 
0.185 

0.0027/ 
0.0960 

0.0026/ 
0.1260 

0.00175/ 
0.112 

0.00211/ 
0.1710 

0.0015/ 
0.15 

4.67/ 
565.12 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+8.734nw=1496.249 513.75 51.38 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 1MHz / (3dBm, 2010µw) / 0.16% / 6.626 10-22w / (3KHz) 

P0’ 
 µw/dBm 

P1’ 
 nw/dBm 

P2’ 
nw/dBm 

P3’ 
nw/dBm 

  P4’ 
nw/dBm 

P5’ 
nw/dBm 

P6’ 
nw/dBm 

P7’ 
nw/dBm 

P8’ 
nw/dBm 

P9’ 
nw/dBm 

1475.71/ 

1.69dBm 

2.7/ 

-55.64dBm 

0.826/ 
-60.83dBm 

0.0853/ 

-70.69dBm 

0.0702/ 

-71.54dBm 

0.0577/ 

-72.39dBm 

0.0522/ 

-72.82dBm 

0.0731/ 

-71.36dBm 

0.0475/ 

-73.23dBm 

0.0589/ 

-72.30dBm 

n0K(µw)

/P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 
n3K(nw)/ 

P3(nw) 
n4K(nw)/ 

P4(nw) 
n5K(nw)/ 

P5(nw) 

n6K(nw)/

P6(nw) 
n7K(nw)/

P7(nw) 
n8K(nw)/

P8(nw) 
n9K(nw)/

P9(nw) 
n10K(µw)/ 

P10(µw) 

1422.28/ 

1422.28 

13.5/ 

54 

0.275/ 

2.48 

0.0213/ 

0.341 

0.014/ 

0.351 

0.0096/ 

0.346 

0.0075/ 

0.365 

0.0091/ 

0.585 

0.0053/ 

0.428 

0.0059/ 

0.589 

4.857/ 

587.68 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+3.98nw=1475.714 534.23 53.43 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 10MHz / (3dBm, 2010µw) / 0.21% / 6.626 10-20w / (30KHz) 

P0’ 

 µw/dBm 
P1’ 

 nw/dBm 
P2’ 

nw/dBm 
P3’ 

nw/dBm 
  P4’ 

nw/dBm 

P5’ 

nw/dBm 
P6’ 

nw/dBm 

P7’ 

nw/dBm 

P8’ 

nw/dBm 

P9’ 

nw/dBm 

1428.89/ 
1.55dBm 

2.6/ 
-55.95dBm 

1.047/ 
-59.80dBm 

0.9268/ 
-60.33dBm 

0.3229/ 
-64.91dBm 

0.2958/ 
-65.29dBm 

0.3170/ 
-64.99dBm 

0.3258/ 
-64.87dBm 

0.3404/ 
-64.68dBm 

0.3311/ 
-64.80dBm 

n0K(µw)

/P0(µw) 

n1K(nw)/

P1(nw) 

n2K(nw)/

P2(nw) 

n3K(nw)/ 

P3(nw) 

n4K(nw)/ 

P4(nw) 

n5K(nw)/ 

P5(nw) 

n6K(nw)/

P6(nw) 

n7K(nw)/

P7(nw) 

n8K(nw)/

P8(nw) 

n9K(nw)/

P9(nw) 

n10K(µw)/ 

P10(µw) 

1370.78/ 
1370.78 

1.3/ 
5.2 

0.349/ 
3.141 

0.2317/ 
3.707 

0.0646/ 
1.6145 

0.0493/ 
1.7748 

0.0453/ 
2.219 

0.0407/ 
2.6064 

0.0378/ 
3.0636 

0.03311/ 
3.311 

5.2826/ 
639.227 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+6.52nw=1428.897 581.1 58.11 
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At the spectrum analyzer input, we are injecting a sine-wave or square signal of frequency between 

50KHz and 10MHz, generated with the AD Instruments AD8610 equipment [21], using 50Ω impedance, with 

level +3dBm (1.796Vpp sinusoidal or 1.268Vpp square, equivalent to 2010μw over 50Ω). In the Rigol 

DSA815TG spectrum analyzer [19] selective level measurements are made in “zero scan” mode of the first ten 

harmonics, with RBW between 300Hz and 30KHz. Applying the eleven equations system described in (72) and 

using the ten measurements taken plus the input power, we obtain the unknowns ni (i=0,1,..,9) , particles number 

associated with each i harmonic of frequency fi. The unknown n10 is associated with the higher order harmonics 

rest power from the tenth harmonic in the input signal. Adding the first ten power spectral measurements 

Pi’(i=0,1,..,9) and Prest , the total power value P' is determined. The sum of the measured powers P' is compared 

to the power of the original input signal P. 

Thus, the power of the fundamental harmonic measured will be compared with respect to the calculated 

theoretical one. The particles number n' (70) and n (71) associated with measured powers P' and input power P, 

respectively, are defined. 

 

Table 5: Data and results of the experiment2 from 50KHz to 10MHz for squared signals. 
f0/P(dBm,µw)/THD/ K=hf0

2/(RBW) 50KHz / (3dBm, 2010µw) / 43.93% / 16.565 10-25w / (300Hz) 

P0’  
µw/dBm 

P1’ 

 µw/dBm 
P2’ 

µw/dBm 
P3’ 

µw/dBm 
  P4’ 

µw/dBm 

P5’ 

µw/dBm 
P6’ 

µw/dBm 

P7’ 

µw/dBm 

P8’ 

µw/dBm 

P9’ 

µw/dBm 

1180.32/ 

0.72dBm 

0.5559/ 

-32.55dBm 

136.46/ 

-8.65dBm 

0.5572/ 

-32.54dBm 

49.09/ 

-13.09dBm 

0.5508/ 

-32.59dBm 

24.66/ 

-16.08dBm 

0.5445/ 

-32.64dBm 

14.59/ 

-18.36dBm 

0.5383/ 

-32.69dBm 

n0K(µw)/

P0(µw) 

n1K(µw)/

P1(µw) 

n2K(µw)/

P2(µw) 
n3K(µw)/ 

P3(µw) 
n4K(µw)/ 

P4(µw) 
n5K(µw)/ 

P5(µw) 

n6K(µw)/

P6(µw) 
n7K(µw)/

P7(µw) 
n8K(µw)/

P8(µw) 
n9K(µw)/

P9(µw) 
n10K(µw)/ 

P10(µw) 

944.57/ 

944.57 

0.278/ 

1.112 

45.487/ 

409.380 

0.139/ 

2.229 

9.818/ 

245.45 

0.0918/ 

3.305 

3.523/ 

172.62 

0.068/ 

4.356 

1.621/ 

131.31 

0.054/ 

5.383 

0.746/ 

90.291 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+227.55=1407.87 602.13 235.75 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 100KHz / (3dBm, 2010µw) / 43.26% / 6.626 10-24w / (300Hz) 

P0’  
µw/dBm 

P1’ 

 µw/dBm 
P2’ 

µw/dBm 
P3’ 

µw/dBm 
  P4’ 

µw/dBm 

P5’ 

µw/dBm 
P6’ 

µw/dBm 

P7’ 

µw/dBm 

P8’ 

µw/dBm 

P9’ 

µw/dBm 

1199.50/ 
0.79dBm 

0.5458/ 
-32.63dBm 

134.59/ 
-8.71dBm 

0.5534/ 
-32.57dBm 

48.98/ 
-13.10dBm 

0.54.70/ 
-32.62dBm 

24.32/ 
-16.14dBm 

0.5358/ 
-32.71dBm 

22.60/ 
-16.46dBm 

0.5483/ 
-32.61dBm 

n0K(µw)/

P0(µw) 

n1K(µw)/

P1(µw) 

n2K(µw)/

P2(µw) 

n3K(µw)/ 

P3(µw) 

n4K(µw)/ 

P4(µw) 

n5K(µw)/ 

P5(µw) 

n6K(µw)/

P6(µw) 

n7K(µw)/

P7(µw) 

n8K(µw)/

P8(µw) 

n9K(µw)/

P9(µw) 

n10K(µw)/ 

P10(µw) 

965.77/ 

965.77 

0.2729/ 

1.0916 

44.863/ 

403.770 

0.1384/ 

2.2136 

9.796/ 

244.9 

0.0912/ 

3.2820 

3.4743/ 

170.240 

0.0670/ 

4.2864 

2.5111/ 

203.40 

0.05483/ 

5.483 

0.04594/ 

5.559 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+233.22=1432.72 577.28 233.73 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 1MHz / (3dBm, 2010µw) / 42.71% / 6.626 10-22w / (3KHz) 

P0’  
µw/dBm 

P1’ 

 µw/dBm 
P2’ 

µw/dBm 
P3’ 

µw/dBm 
  P4’ 

µw/dBm 

P5’ 

µw/dBm 
P6’ 

µw/dBm 

P7’ 

µw/dBm 

P8’ 

µw/dBm 

P9’ 

µw/dBm 

1199.50/ 

0.79dBm 

0.53/ 

-32.76dBm 

131.83/ 

-8.80dBm 

0.58/ 

-32.37dBm 

48.31/ 

-13.16dBm 

0.56/ 

-32.50dBm 

23.02/ 

-16.38dBm 

0.53/ 

-32.73dBm 

13.15/ 

-18.81dBm 

0.49/ 

-33.07dBm 

n0K(µw)/

P0(µw) 

n1K(µw)/

P1(µw) 

n2K(µw)/

P2(µw) 
n3K(µw)/ 

P3(µw) 
n4K(µw)/ 

P4(µw) 
n5K(µw)/ 

P5(µw) 

n6K(µw)/

P6(µw) 
n7K(µw)/

P7(µw) 
n8K(µw)/

P8(µw) 
n9K(µw)/

P9(µw) 
n10K(µw)/ 

P10(µw) 

920.79/ 

920.79 

0.265/ 

1.06 

43.94/ 

395.49 

0.145/ 

2.32 

9.662/ 

241.55 

0.093/ 

3.360 

3.29/ 

161.13 

0.066/ 

4.24 

1.46/ 

118.35 

0.049/ 

4.9 

0.88/ 

106.80 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+99=1298.5 591.5 228.71 

f0/P(dBm,µw)/THD/ K=hf0
2/(RBW) 10MHz / (3dBm, 2010µw) / 21.73% / 6.626 10-20w / (30KHz) 

P0’  
µw/dBm 

P1’ 

 µw/dBm 
P2’ 

µw/dBm 
P3’ 

µw/dBm 
  P4’ 

µw/dBm 

P5’ 

µw/dBm 
P6’ 

µw/dBm 

P7’ 

µw/dBm 

P8’ 

µw/dBm 

P9’ 

µw/dBm 

1145.51/ 

0.59dBm 

0.31/ 

-35.10dBm 

51.17/ 

-12.91dBm 

0.07/ 

-41.39dBm 

0.90/ 

-30.47dBm 

0.009/ 

-50.34dBm 

0.97/ 

-30.13dBm 

0.024/ 

-46.19dBm 

0.65/ 

-31.89dBm 

0.017/ 

-47.62dBm 

n0K(µw)/

P0(µw) 

n1K(µw)/

P1(µw) 

n2K(µw)/

P2(µw) 
n3K(µw)/ 

P3(µw) 
n4K(µw)/ 

P4(µw) 
n5K(µw)/ 

P5(µw) 

n6K(µw)/

P6(µw) 
n7K(µw)/

P7(µw) 
n8K(µw)/

P8(µw) 
n9K(µw)/

P9(µw) 
n10K(µw)/ 

P10(µw) 

1016.73/ 
1016.73 

0.155/ 
0.62 

17.057/ 
153.51 

0.0175/ 
0.28 

0.18/ 
4.5 

0.0015/ 
0.054 

0.139/ 
6.79 

0.003/ 
0.192 

0.072/ 
5.85 

0.0017/ 
0.17 

6.79/ 
821.31 

P’ (µw)    D=P- P’(µw) D0=P0’- P0(µw) 

P0’+54.12=1199.63 810.37 128.78 

 

The results obtained are shown in Table4 and Table5 for sine and square signals, respectively. Table6 

shows a summary of results, which give rise to the following conclusions: 

 The results associated with Table4 for sine signals are similar to those of experiment1 and lead to the same 

conclusions: in general, the increase in frequency produces an increase in parameters D and D0, in addition 

to increasing the D/P and D0/P0’ ratios. 
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 For the same level and same frequency, the shape of the signal influences the distribution of power P over 

the harmonics and also in the power measurements Pi'. Thus, D and D0 will be greater in a square signal 

than in a sinusoidal signal. The values of D and D0 increase with the distortion of the input signal. The same 

applies to the D/P and D0/P0’ ratios, which are always greater in square signals, compared to their sine-

wave equivalents. 

 Observe that the rest input powers calculated in square signals are smaller than those of their sinusoidal 

equivalents (at the same level, same frequency and same number of measured harmonics). This means that 

the distribution of input power in the higher order harmonics is greater in the harmonics closest to the 

fundamental, the greater the distortion. That is, in sinusoidal low distortion signals there may be a 

distribution of power in higher order harmonics important, but it is not in the closest to the fundamental, but 

in the farthest the lower the distortion. This explains relatively large power differences D in low distortion 

sinusoidal signals. 

 

Table 6: Processing and summary results of experiment 2. 
Results Summary (3dBm) Experiment2 

Sine Signal  Squared Signal  

f0/THD D(µw) D0(µw)  D/P %  D0/P0’ % f0/THD D(µw) D0(µw) D/P %  D0/P0’ % 

50KHz/0.24% 537.68 53.78 26.75 3.65 50KHz/43.93% 602.13 235.75 29.96 19.98 

100KHz/0.24% 513.75 51.38 25.56 3.43 100KHz/43.26% 577.28 233.73 28.72 19.49 

1MHz/0.16% 534.23 53.43 26.58 3.62 1MHz/42.71% 591.50 228.71 29.43 19.07 

10MHz/0.21% 581.10 58.11 28.91 4.07 10MHz/21.73% 810.37 128.78 40.32 11.24 

  

VII. Conclusion 
The extended relativity theoretical basis is the quantization hypothesis of the propagation velocity of 

any interaction with information in quantization intervals of size c in a vacuum. 

This situation allows generalizing Einstein's relativity principle considering that “the laws of nature are 

the same in any inertial reference system, regardless of its application speed coordinate”. Its justification is 

achieved through the Lorentz transformations of generic m_degree, which lets quantization of propagation 

velocities in electromagnetic interactions. Why? Because the Lorentz transformations of m_degree are a 

generalization of the Lorentz transformations, which admit observers and physical entities observed in any 

coordinate of generic speed, distinguishing between one and the other. 

The Lorentz transformations of m_degree represent a formal justification of the speed of light 

quantization hypothesis, supported by the wave equation study, where implicitly arises the wave propagation 

speed that, traditionally, in any circumstance in a vacuum is c. However, this detailed wave equation study 

concludes that “the wave propagation speed measured in a given observation does not depend on the origin of 

the wave, but precisely on the speed coordinate from which the measurement is made”. Then, a light wave 

originating in the speed m_coordinate, propagating with (m+1)c velocity, will be seen thus if the observer 

moves within its same speed m_coordinate; in any other case, the observer detects the light with propagation 

velocity associated to its movement coordinate, for example, if the observer is in the speed 0_coordinate, the 

wave is seen with propagation velocity c. 

The experimental support for the light velocity quantization hypothesis developed is based on the 

spectral study of harmonics in electromagnetic signals. The proposed experiments offer power discrepancies 

between the signals generated and those measured by spectral analysis. These differences, not explained by 

conventional theories, are explained by the quantization hypothesis of the propagation velocities in the different 

harmonics that compose these electromagnetic signals. 

Two types of waves, sinusoidal and square, have been used and, as expected, it is concluded that for 

the same frequency and same effective value, the greater the distortion of the signal, the greater the power 

difference between the generated signal and the spectrally measured signal. This is due to the fact that the more 

power is distributed in the higher order harmonics, with respect to the fundamental harmonic which decreases its 

level, the greater the total power difference measured with respect to the generated, taking into account that, 

1. Higher-order harmonics propagate at higher speed coordinates, that is, above the speed 0_coordinate. 

2. The measurement is made from the speed 0_coordinate and in the power difference, the value of the 

fundamental harmonic does not intervene, nor of the first higher harmonic (65). 

3. From the speed 0_coordinate, the signal propagation effect in other higher coordinates is observed, 

apparently with less power, except in the fundamental harmonic where the measure P0' is higher than the 

expected value P0, compatible with the quantization theory of the speed of light. 

The distribution of input power in the higher order harmonics is greater in the harmonics closest to the 

fundamental one, the greater the distortion, as occurs with square signals. Thus, in low distortion signals we can 
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find with a distribution of power in higher order harmonics important, power as much further from the 

fundamental harmonic as the lower the distortion. The relatively large power differences D obtained in low 

distortion signals are, therefore, another argument in favor of the quantization theory of the speed of light. 

In addition, for the same type of signal, with the same shape, the higher the frequency f, the greater the 

power difference between generated and measured, due to the influence of the K parameter, function of f
2
. 

 

Appendix 
 The equipments used in the experiments for generating and measuring signals, with their technical 

specifications, are indicated below.  

1. RF Synthesizer  Hameg HM8134 [18]: 

Range 1Hz to 1024MHz, Resolution 1Hz, spectral harmonic purity 1Hz to 1024MHz<-30dBc, output level 

accuracy ±0.5dBm, impedance 50Ω, VSWR<1,5 

2. Spectrum Analyzer Rigol DSA815TG [19]: 

Range 9KHz to 1.5GHz (-3dB), frequency resolution 1Hz, reference frequency 10MHz, RBW 10Hz to 

1MHz, VBW 1Hz to 3MHz, SSB phase noise <-80dBc/Hz (10KHz), amplitude range DANL to +20dBm, 

preamplifier with gain 20dB, zero span, markers, input impedance 50Ω (selectable 75 Ω), attenuator 0 to 30dB, 

tracking generator 100KHz to 1.5GHz (-20dBm to 0dBm). 

3. Digital Oscilloscope Tektronix TDS220 [20]: 

Sample range 1GS/s, Frequency band width 100MHz, input impedance 1MΩ, 20pF, two channel dual, 

maximum input 300Vrms. 

4. Function/arbitrary waveform generator AD Instruments AD8610 [21]: 

Bandwidth and max output frequency 10MHz, frequency resolution 1µHz, sample rate 125MS/s, 2 output 

channels, waveform sine, square, triangular, pulse, Gaussian, noise, arbitrary, modulation in AM, FM, PM, 

FSK, ASK, PWM, burst, amplitude range 2mVpp to 10Vpp (50). 

For experiment1, equipments 1, 2 and 3 were used. For experiment2, equipments 2, 3 and 4 were used. To 

solve the different systems of linear equations proposed in each of experiments 1 and 2, the Gauss-Jordan 

method was used, applied in a practical way through [25]. The images corresponding to the development of 

experiment1 and experiment2 can be obtained in [26]. 
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