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Abstract: Quantum computation applications utilize basically the structures having two definite states named 

as QuBit (Quantum Bit). In spin based quantum computation applications like NMR and EPR techniques, 

besides the Spin-1/2 systems (electron and proton spins), there are many systems having spins greater than 1/2. 

For instance, in some structures, coupled two electrons can form triplet states with total spin of 1, and 
14

N 

nucleus has, one of the widely encountered nuclei, also spin of 1. In quantum computation, such systems are 

called Qutrit systems and have the potential of use in spin based quantum computation applications. Besides the 

well-known CNOT gates in QuBit system, we suggest some CNOT gates for Qutrit systems composed of two 

Spin-1 systems, forming control and target Qutrits. 
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I. Introduction  
In quantum computation systems, the basic gates like Hadamard, Pauli X, Y and Z, CNOT, phase shift, 

SWAP, Toffoli and Fredkin have been constructed for two-state systems. Quantum logical gate such as the 

SWAP gate, controlled phase gate [1–2], and CNOT gate [3-5], one of the essential building block quantum 

computers [5-6]. In spin based quantum computation applications, spin- 1/2 particles like proton and electron 

are the pioneering structures for two-state systems whose base states are represented as | 0 , | 1 . There are other 

commonly encountered systems with spin-1 forming three states known as qutrit systems whose basis states are 

shown as   0 ,   1 ,   2    . For example, coupled two electrons form triplet states (with total spin of 1) and the 

nuclear spin of 
14

N is also 1 and both systems form qutrit systems. Nuclear magnetic resonance (NMR) and 

electron paramagnetic resonance (EPR) spectroscopies, being spin based quantum computation application 

candidate instruments, already use qubit systems and/or are capable of using spins greater than 1/2. If basic 

quantum gates for spin-1 systems are constructed, they probably will become another alternative candidate for 

spin based quantum computation applications. One of the basic gates for spin-1 systems is CNOT gate, which 

requires two spin-1 particles where one of them controls qutrit and the other one controls target qutrit, similar to 

the CNOT gate for spin-1/2 systems. The control qutrit does not change after CNOT operation and only target 

qutrit is altered. In this work, besides the known CNOT gates of spin-1 systems, some other CNOT candidates 

will be suggested.  

 

II. Material And Methods  
The processors in which the status of any unit depends on the status of the other cluster are called 

controlled processors. A quantum circuit is a combination of quantum gates that are located in various rows and 

connected by quantum cables. CNOT gate is similar to qubit systems with a base including two qutrits as 

  𝑚    𝑛 , where m is control qutrit and n is target qutrit [7]. Both m and n are represented by the numbers 0, 1 and 

2, and therefore a total of nine unique states are obtained. CNOT gates must satisfy the condition [8]. 

 

 

                                                          𝑚    𝑛 = | 𝑚  | 𝑛 ⊕ 𝑚                             
(1) 

where the symbol ⊕ represent (𝑛 − 𝑚) modulo 𝑑, and where d is the dimension of the Hilbert space spanned 

by qutrit system and here d = 3. Just like in qubit systems, the symbol ⊕ represents classical XOR logic gate. In 

the following discussion, the abstract expression   𝑚    𝑛 = |  𝑚𝑛   of CNOT gates for qutrit systems will be 

used.  

The CNOT gate is a reversible gate and can be reversed by applying the same gate. On the other hand, 

the operator is unitary and unitary operators live the size of the operant they change intact [9].  
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Quantum logic gates for bases greater than two-dimensional qubit systems, namely qutrits and higher 

dimensional bases are relatively new subject for spin based quantum computation theory and applications 

because present discussions and formulations on the subject have focused on qubit systems [10]. Gates such as 

Hadamard, CNOT, SWAP, do not have classical equivalents. For example, the Hadamard gate makes it a 

superposition with other states of the system [11, 12-13]. In this work, five CNOT gate candidates were 

suggested whose elements were different combinations of two qutrit bases.    

If the status of any well-known qubit operator is dependent on the status of another qubit, these 

operator are called controlled operators. The CNOT gate is the most commonly known of these types of 

operator s. When the status of the control qubit is reversed by the CNOT operator control qubit is   1  , the status 

of the control qubit is   0  , leaving the state of the target qubid unchanged. 

When a quantum system   𝑎𝑏   of two qubits is taken into consideration, the operation is writes as 

CNOT𝑎   𝑎𝑏  =   𝑎 𝑎 ⊕ 𝑏  , where a is control qubit and b is target qubit. In the equation ⊕ operation is the 

process of summing by mode 2, namely XOR gate. 

The matrix operator of the CNOT gate for two cubit systems is given as [14], 

 

                                                                           CNOT =  

1  0  0  0
0  1  0  0
0  0  0  1
0  0  1  0

                                                                     

(2) 

 

Here the input state   𝑎𝑏   is CNOT gate with expression   𝑎 𝑎 ⊕ 𝑏   where control qubit a does not change its 

state. One CNOT gate candidate implementation was proposed by Cory et al, [15, 16]. 

Spin based quantum computation applications are suitable for qutrit bases as well as qubit bases since 

different nuclear spins of atoms span higher dimensional Hilbert base spaces, and therefore the theoretical 

backgrounds will be necessary for these bases as well. Although some quantum gates have been proposed for 

spin-1 and higher, some more discussions and work seem to be necessary.  

 

III. Result and Discussion 
Two qutrits or two spin-1 systems form nine different states. In the expression   𝒎    𝒏 = | 𝒎𝒏 , where 

m, n = 0, 1, 2, the nine different states are constructed as | 𝟎𝟎 , |  𝟎𝟏 , | 𝟎𝟐 ,   𝟏𝟎 ,   𝟏𝟏 , |  𝟏𝟐 , | 𝟐𝟎 , | 𝟐𝟏 ,
| 𝟐𝟐 . The left qutrit in Equation 1 is control qutrit and does not change, and the target qutrit is altered after 

CNOT operation obeys the condition given in Equation 1. 

 

Table 1: The suggested CNOT gates. All states are represented by |  𝑚𝑛  where m is control and n is target 

qutrit.  

           The rows indexed 3 to 8 satisfy the modular arithmetic m–n mod 3 condition as discussed in the text. 

 
𝑸𝟎 𝐂𝐍𝐎𝐓𝑨 𝐂𝐍𝐎𝐓𝑩 𝐂𝐍𝐎𝐓𝑪 𝐂𝐍𝐎𝐓𝑫

 |00 − 0  |00 − 0  |00 − 0  |00 − 0  |00 − 0
 |01 − 1  |01 − 1  |01 − 1  |01 − 1  |01 − 1
 |02 − 2  |02 − 2  |02 − 2  |02 − 2  |02 − 2
 |10 − 3  |10 − 7  |11 − 8  |12 − 4  |11 − 5
 |11 − 4  |11 − 8  |10 − 6  |11 − 5  |12 − 3
 |12 − 5  |12 − 6  |12 − 7  |10 − 3  |10 − 4
 |20 − 6  |20 − 4  |21 − 5  |22 − 7  |21 − 8
 |21 − 7  |22 − 5  |20 − 3  |21 − 8  |22 − 6
 |22 − 8  |21 −  3  |22 − 4  |20 − 6  |20 − 7

 

 

Table 1 demonstrates four CNOT gate operations for two qutrit systems. Theoretically modular 

arithmetic is used to set up CNOT gates, (in qubit system classical XOR logic stands for modular arithmetic). 

Similarly, the suggested gate operations given in Table 1 and corresponding explicit operator matrices given in 

Equation 3 were obtained. In Table 1, the leftmost column is input states and other columns with titles from 

CNOTA to CNOTD are the results of corresponding CNOT gates. As will be seen in Table 1, except first three 

rows, the operations all satisfy modular arithmetic. 
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CNOT𝐴 =

 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0 

 
 
 
 
 
 
 
 

CNOT𝐵 =

 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 

 
 
 
 
 
 
 
 

CNOT𝐶 =

 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 

 
 
 
 
 
 
 
 

CNOT𝐷 =

 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0 

 
 
 
 
 
 
 
 

                         

(3) 

The determinants of all gates are common and unity. Some other properties and the interrelations of the 

suggested CNOT gates were given in Equation 3. It is easily seen that the squares of the gates and the inverses 

of the gates are interrelated. These properties indicate that the four CNOT gates can be generated from each 

other. A problem emerges at this point about the uniqueness of the four gates under consideration and 

uniqueness property needs to be considered separately. The results obtained from the transactions with other 

matrices are given in Table 2. 

 

 Table 2: Results obtained from the transactions with other matrices of CNOT gate for two qutrit 

systems.                                              Here 𝟙9 represents unit matrix of dimension 9. 

 

 

 

 

 

 

IV. Conclusion 

In contrast to the qubit systems, the theoretical basis for qutrit systems and hence the basic gates have 

drawn attention during the recent years. Especially spin based quantum computation has the potential of using 

spins greater than 1/2; e.g. NMR and specifically EPR spectroscopic techniques cover different spins. In this 

theoretical study, four controlled-NOT (CNOT) gates for two qutrit systems were suggested which were formed 

through different permutations of similar operators. The operators obey the modular arithmetic rule   𝑚    𝑛 =
| 𝑚  | 𝑛 ⊕ 𝑚 , where m is control qutrit and n is target qutrit. Since the base system is qutrit, that is spin-1, the 

operators had to be nine dimensional. Some properties and discrepancies were discussed. 
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