Application of the 'invariant eigen-operator' and energy-level gap

Aeran Kim
(A Private mathematics academy, l-
\#406, 23, Maebong 5-gil, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54921, Republic of Korea)

Abstract: We apply the conception of 'invariant eigen-operator' of the square of the Schrödinger operator which is proposed by H. Y. Fan and C. Li to some molecule oscillator models and we find more 'invariant eigenoperators'.
Keywords: Schrödinger operator, Invariant eigen-operator

I. Introduction

H. Y. Fan and C. Li [1] suggest that the invariant eigen-operator \widehat{O}_{e} satisfies

$$
\begin{equation*}
\left(i \frac{d}{d t}\right)^{2} \hat{O}_{e}=\left[\left[\hat{O}_{e}, \widehat{H}\right], \widehat{H}\right]=\lambda \hat{O}_{e} \tag{1}
\end{equation*}
$$

noticing from the Heisenberg equation

$$
i \frac{d}{d t} \hat{O}_{e}=\frac{1}{i}\left[\widehat{O}_{e}, \widehat{H}\right] \quad \text { for } \hbar=1
$$

And they judge that $\sqrt{\lambda}$ in (1) is the energy gap between two adjacent eigenstates of the Hamiltonian \widehat{H}.
In this article we use the conception of 'invariant eigen-operator' so that we can obtain the energy gap in twomode coupled oscillators and find more another 'invariant eigen-operators' in bi-atomic and triatomic molecule systems.

II. Some results

The model of two coupled time-dependent harmonic oscillators has been studied by many authors and applied to describe quantum amplifiers and converters. The Hamiltonian [2] for the model is

$$
\begin{equation*}
H=\omega_{a} a^{\dagger} a+\omega_{b} b^{\dagger} b+g\left(a^{\dagger} b+b^{\dagger} a\right), \tag{2}
\end{equation*}
$$

where $a(b)$ and $a^{\dagger}\left(b^{\dagger}\right)$ are annihilation and creation operators for each of one of the interacting modes of frequency ω_{a} and ω_{b}, obeying $\left[a^{\dagger}, a\right]=-1\left(\left[b^{\dagger}, b\right]=-1\right)$ and $g(>0)$ is the coupling constant.

Theorem 2.1. For the two-mode coupled oscillators, the energy gap between two states is

$$
\Delta E=\sqrt{\omega_{a}^{2}+l g\left(\omega_{a}+\omega_{b}\right)+g^{2}}
$$

where the coefficient l is given by

$$
l=\frac{\omega_{b}-\omega_{a} \pm \sqrt{\left(\omega_{b}-\omega_{a}\right)^{2}+4 g^{2}}}{2 g}
$$

Proof. By using Eq. (2) and the Heisenberg equation of motion, we have

$$
\begin{align*}
i \frac{d}{d t} a= & {[a, H]=\left[a, \omega_{a} a^{\dagger} a+\omega_{b} b^{\dagger} b+g\left(a^{\dagger} b+b^{\dagger} a\right)\right] } \\
= & \omega_{a}\left[a, a^{\dagger} a\right]+\omega_{b}\left[a, b^{\dagger} b\right]+g\left(\left[a, a^{\dagger} b\right]+\left[a, b^{\dagger} a\right]\right) \\
= & \omega_{a}\left(a^{\dagger}[a, a]+\left[a, a^{\dagger}\right] a\right)+\omega_{b}\left(b^{\dagger}[a, b]+\left[a, b^{\dagger}\right] b\right) \tag{3}\\
& \quad+g\left(a^{\dagger}[a, b]+\left[a, a^{\dagger}\right] b+b^{\dagger}[a, a]+\left[a, b^{\dagger}\right] a\right) \\
= & \omega_{a} a+g b .
\end{align*}
$$

Similarly, we obtain

$$
\begin{equation*}
i \frac{d}{d t} b=[b, H]=\omega_{b} b+g a . \tag{4}
\end{equation*}
$$

To find one of the 'invariant eigen-operators' of $\left(i \frac{d}{d t}\right)^{2}$ we put $\hat{O}_{e}=a+l b$. Then by (1), (3), and (4), we observe that
(5)

$$
\begin{aligned}
(\Delta E)^{2}(a+l b) & =(\Delta E)^{2} \widehat{O}_{e} \\
& =\left(i \frac{d}{d t}\right)^{2} \widehat{O}_{e} \\
& =\left[\left[\widehat{O}_{e}, \widehat{H}\right], \widehat{H}\right] \\
& =[[a+l b, \widehat{H}], \widehat{H}] \\
& =[[a, \widehat{H}]+l[b, \widehat{H}], \widehat{H}] \\
& =\left[\omega_{a} a+g b+l\left(\omega_{b} b+g a\right), \widehat{H}\right] \\
& =\left(\omega_{a}+l g\right)[a, \widehat{H}]+\left(g+l \omega_{b}\right)[b, \widehat{H}] \\
& =\left(\omega_{a}+\lg \right)\left(\omega_{a} a+g b\right)+\left(g+l \omega_{b}\right)\left(\omega_{b} b+g a\right) \\
& =\left\{\omega_{a}^{2}+\lg \left(\omega_{a}+\omega_{b}\right)+g^{2}\right\} a+l\left\{\frac{g}{l}\left(\omega_{a}+\omega_{b}\right)+g^{2}+\omega_{b}^{2}\right\} b
\end{aligned}
$$

and so we claim that

$$
\omega_{a}^{2}+g l\left(\omega_{a}+\omega_{b}\right)+g^{2}=\frac{g}{l}\left(\omega_{a}+\omega_{b}\right)+g^{2}+\omega_{b}^{2} .
$$

Solving this we have

$$
l\left(\omega_{a}^{2}-\omega_{b}^{2}\right)+g l^{2}\left(\omega_{a}+\omega_{b}\right)-g\left(\omega_{a}+\omega_{b}\right)=0
$$

and

$$
\left(\omega_{a}+\omega_{b}\right) g\left(l^{2}+\frac{\omega_{a}-\omega_{b}}{g} l-1\right)=0
$$

which implies that

$$
l=\frac{-\frac{\omega_{a}-\omega_{b}}{g} \pm \sqrt{\left(\frac{\omega_{a}-\omega_{b}}{g}\right)^{2}+4}}{2}=\frac{\omega_{b}-\omega_{a} \pm \sqrt{\left(\omega_{b}-\omega_{a}\right)^{2}+4 g^{2}}}{2 g}
$$

Adopting this l, we can rewrite Eq. (5) as

$$
(\Delta E)^{2} \widehat{O}_{e}=\left\{\omega_{a}^{2}+\lg \left(\omega_{a}+\omega_{b}\right)+g^{2}\right\} \widehat{o}_{e}
$$

therefore, the proof is complete.
Example 2.2. Let us consider the special case $\omega_{a}=\omega_{b}(:=\omega)$ of Theorem 2.1. Then $l= \pm 1$ and the energylevel gap

$$
\Delta E=\sqrt{\omega^{2} \pm 2 g \omega+g^{2}}=\omega \pm g,
$$

which coincides with [1].
The Hamiltonian that describes bi-atomic molecule is [1,3]

$$
\begin{equation*}
H=\frac{1}{2 m}\left(P_{1}^{2}+P_{2}^{2}\right)+\frac{1}{2} m \omega^{2}\left(x_{1}^{2}+x_{2}^{2}\right)-\lambda x_{1} x_{2} \tag{6}
\end{equation*}
$$

and it satisfies the following commutation relations:

$$
\begin{array}{ll}
{\left[x_{1}, H\right]=\frac{i P_{1}}{m},} & {\left[P_{1}, H\right]=-i m \omega^{2} x_{1}+i \lambda x_{2}} \tag{7}\\
{\left[x_{2}, H\right]=\frac{i P_{2}}{m},} & {\left[P_{2}, H\right]=-i m \omega^{2} x_{2}+i \lambda x_{1}}
\end{array}
$$

H. Y. Fan and C. Li suppose

$$
\begin{equation*}
\hat{o}_{1 e}=x_{1} \pm x_{2} \tag{8}
\end{equation*}
$$

as the 'invariant eigen-operator' of (6) to obtain the energy-level gap

$$
\begin{equation*}
\Delta E=\sqrt{\left(\omega^{2} \mp \frac{\lambda}{m}\right)} \tag{9}
\end{equation*}
$$

respectively, in [1]. We find another 'invariant eigen-operator' of (6) to get the same energy-level gap in the below corollary.

Corollary 2.3. One of the 'invariant eigen-operators' of bi-atomic molecule model is

$$
\hat{O}_{2 e}=P_{1} \pm P_{2} .
$$

Proof. By using the given 'invariant eigen-operator', (1), and (7), we deduce that

$$
\begin{aligned}
(\Delta E)^{2} \widehat{O}_{2 e} & =\left(i \frac{d}{d t}\right)^{2} \widehat{O}_{2 e} \\
& =\left[\left[\hat{O}_{2 e}, \widehat{H}\right], \widehat{H}\right] \\
& =\left[\left[P_{1} \pm P_{2}, \widehat{H}\right], \widehat{H}\right] \\
& =i\left(-m \omega^{2} \pm \lambda\right)\left[x_{1}, H\right]+i\left(\lambda \mp m \omega^{2}\right)\left[x_{2}, H\right] \\
& =i\left(-m \omega^{2} \pm \lambda\right) \cdot \frac{i P_{1}}{m}+i\left(\lambda \mp m \omega^{2}\right) \cdot \frac{i P_{2}}{m} \\
& =\left(\omega^{2} \mp \frac{\lambda}{m}\right) P_{1} \pm\left(\omega^{2} \mp \frac{\lambda}{m}\right) P_{2} \\
& =\left(\omega^{2} \mp \frac{\lambda}{m}\right)\left(P_{1} \pm P_{2}\right) \\
& =\left(\omega^{2} \mp \frac{\lambda}{m}\right) \hat{O}_{2 e}
\end{aligned}
$$

and so it coincides with (9).
Remark 2.4. Let $\widehat{O}_{3 e}=\widehat{O}_{1 e}+\widehat{O}_{2 e}$. Then from (8), (9), and Corollary 2.3 we lead that

$$
\begin{aligned}
(\Delta E)^{2} \hat{O}_{3 e} & =(\Delta E)^{2}\left(x_{1} \pm x_{2}+P_{1} \pm P_{2}\right) \\
& =\left(\omega^{2} \mp \frac{\lambda}{m}\right)\left(x_{1} \pm x_{2}+P_{1} \pm P_{2}\right) \\
& =\left(\omega^{2} \mp \frac{\lambda}{m}\right) \hat{O}_{3 e}
\end{aligned}
$$

and so we discover another 'invariant eigen-operator' of (6) is $\hat{O}_{3 e}=x_{1} \pm x_{2}+P_{1} \pm P_{2}$. This fact arouses the idea of Lemma 2.5.

Lemma 2.5. Let V and W be the sets of 'invariant eigen-operators' with the same energy-level gap. Then the mapping

$$
\left(i \frac{d}{d t}\right)^{2}: V \rightarrow W
$$

is a linear map.
Proof. Let $\hat{O}_{1 e}, \hat{O}_{2 e} \in V$ with the same energy-level gap ΔE, i.e., by (1) we have

$$
\left(i \frac{d}{d t}\right)^{2} \hat{O}_{1 e}=\left[\left[\hat{O}_{1 e}, \widehat{H}\right], \widehat{H}\right]=(\Delta E)^{2} \hat{O}_{1 e}
$$

and

$$
\left(i \frac{d}{d t}\right)^{2} \widehat{O}_{2 e}=\left[\left[\widehat{O}_{2 e}, \widehat{H}\right], \widehat{H}\right]=(\Delta E)^{2} \widehat{O}_{2 e}
$$

Thus, we can show that

$$
\begin{aligned}
\left(i \frac{d}{d t}\right)^{2} \hat{O}_{1 e}+\left(i \frac{d}{d t}\right)^{2} \hat{O}_{2 e} & =(\Delta E)^{2} \hat{O}_{1 e}+(\Delta E)^{2} \hat{O}_{2 e} \\
& =(\Delta E)^{2}\left(\hat{O}_{1 e}+\hat{O}_{2 e}\right) \\
& =\left(i \frac{d}{d t}\right)^{2}\left(\hat{O}_{1 e}+\hat{O}_{2 e}\right)
\end{aligned}
$$

Moreover, for any constant $\alpha \in \mathbb{C}$ we obtain

$$
\begin{aligned}
\left(i \frac{d}{d t}\right)^{2}\left(\alpha \widehat{O}_{1 e}\right) & =\left[\left[\alpha \hat{O}_{1 e}, \widehat{H}\right], \widehat{H}\right] \\
& =\left[\alpha\left[\widehat{O}_{1 e}, \widehat{H}\right], \widehat{H}\right] \\
& =\alpha\left[\left[\hat{O}_{1 e}, \widehat{H}\right], \widehat{H}\right] \\
& =\alpha\left(i \frac{d}{d t}\right)^{2} \widehat{O}_{1 e}
\end{aligned}
$$

The Hamiltonian operator that describes a linear triatomic molecule is [1, 4]

$$
\begin{equation*}
H=\frac{P_{1}^{2}}{2 m}+\frac{P_{2}^{2}}{2 M}+\frac{P_{3}^{2}}{2 m}+\frac{\tau}{2}\left(x_{2}-x_{1}-\beta\right)^{2}+\frac{\tau}{2}\left(x_{3}-x_{2}-\beta\right)^{2} \tag{10}
\end{equation*}
$$

and it signifies as follows:

$$
\begin{array}{ll}
{\left[x_{1}, H\right]=\frac{i P_{1}}{m},} & {\left[P_{1}, H\right]=i \tau\left(x_{2}-x_{1}-\beta\right),} \\
{\left[x_{2}, H\right]=\frac{i P_{2}}{M},} & {\left[P_{2}, H\right]=i \tau\left(x_{3}-2 x_{2}+x_{1}\right),} \tag{11}\\
{\left[x_{3}, H\right]=\frac{i P_{3}}{m},} & {\left[P_{3}, H\right]=i \tau\left(x_{2}-x_{3}+\beta\right) .}
\end{array}
$$

Similarly, in [1] H. Y. Fan and C. Li suggest

$$
\begin{equation*}
\hat{O}_{4 e}=x_{1}-x_{3}, \quad \hat{O}_{5 e}=x_{1}-2 x_{2}+x_{3}, \quad \hat{O}_{6 e}=x_{1}+\frac{M}{m} x_{2}+x_{3} \tag{12}
\end{equation*}
$$

as the 'invariant eigen-operator' of (10) to obtain the energy-level gap

$$
\begin{equation*}
\Delta E=\sqrt{\frac{\tau}{m}}, \quad \Delta E=\sqrt{\frac{\tau}{m}\left(1+\frac{2 m}{M}\right)}, \quad \Delta E=0 \tag{13}
\end{equation*}
$$

respectively. Thus, we find another 'invariant eigen-operator' of (10) to get the same energy-level gap in Theorem 2.6.

Theorem 2.6. In a linear triatomic molecule model, three of the 'invariant eigen-operators' are

$$
\begin{aligned}
& \hat{O}_{1 e}=P_{1}-P_{3} \\
& \hat{O}_{2 e}=P_{1}-\frac{2 m}{M} P_{2}+P_{3} \\
& \hat{O}_{3 e}=P_{1}+P_{2}+P_{3}
\end{aligned}
$$

and their corresponding energy gap is

$$
\begin{aligned}
\Delta E_{1 e} & =\sqrt{\frac{\tau}{m}} \\
\Delta E_{2 e} & =\sqrt{\frac{\tau}{m}\left(1+\frac{2 m}{M}\right)} \\
\Delta E_{3 e} & =0
\end{aligned}
$$

Proof. For $l_{2}, l_{3} \in \mathbb{R}$, we set

$$
\begin{equation*}
\hat{o}_{e}=P_{1}+l_{2} P_{2}+l_{3} P_{3} . \tag{14}
\end{equation*}
$$

Then by (1) and (11), we note that

$$
\begin{align*}
(\Delta E)^{2}\left(P_{1}+l_{2} P_{2}+l_{3} P_{3}\right) & =\left(i \frac{d}{d t}\right)^{2} \widehat{O}_{e} \\
& =\left[\left[\widehat{O}_{e}, \widehat{H}\right], \widehat{H}\right] \\
& =\left[\left[P_{1}, \widehat{H}\right]+l_{2}\left[P_{2}, \widehat{H}\right]+l_{3}\left[P_{3}, \widehat{H}\right], \widehat{H}\right] \\
& =\left[i \tau\left(x_{2}-x_{1}-\beta\right)+l_{2} \cdot i \tau\left(x_{3}-2 x_{2}+x_{1}\right)+l_{3} \cdot i \tau\left(x_{2}-x_{3}+\beta\right), \widehat{H}\right] \tag{15}\\
& =i \tau\left(-1+l_{2}\right)\left[x_{1}, \widehat{H}\right]+i \tau\left(1-2 l_{2}+l_{3}\right)\left[x_{2}, \widehat{H}\right]+i \tau\left(l_{2}-l_{3}\right)\left[x_{3}, \widehat{H}\right] \\
& =i \tau\left(-1+l_{2}\right) \cdot \frac{i P_{1}}{m}+i \tau\left(1-2 l_{2}+l_{3}\right) \cdot \frac{i P_{2}}{M}+i \tau\left(l_{2}-l_{3}\right) \cdot \frac{i P_{3}}{m} \\
& =\frac{\tau\left(1-l_{2}\right)}{m}\left(P_{1}-\frac{m\left(l_{3}-2 l_{2}+1\right)}{M\left(1-l_{2}\right)} P_{2}+\frac{l_{3}-l_{2}}{1-l_{2}} P_{3}\right)
\end{align*}
$$

and

$$
\begin{equation*}
\Delta E=\sqrt{\frac{\tau\left(1-l_{2}\right)}{m}}, \quad l_{2}=-\frac{m\left(l_{3}-2 l_{2}+1\right)}{M\left(1-l_{2}\right)}, \quad l_{3}=\frac{l_{3}-l_{2}}{1-l_{2}} \tag{16}
\end{equation*}
$$

for $l_{2} \neq 1$. The 3rd identity of (16) shows that

$$
l_{3}\left(1-l_{2}\right)=l_{3}-l_{2} \quad \Rightarrow \quad l_{2}\left(l_{3}-1\right)=0 \quad \Rightarrow \quad l_{2}=0 \quad \text { or } \quad l_{3}=1
$$

Case 1] Where $l_{2}=0 ; \quad \mathrm{By}(14)$ and (16) we have

$$
\frac{m\left(l_{3}+1\right)}{M}=0 \quad \Rightarrow \quad l_{3}=-1
$$

and so

$$
\Delta E_{1 e}=\sqrt{\frac{\tau}{m}}, \quad \hat{O}_{1 e}=P_{1}-P_{3}
$$

Case 2] Where $l_{3}=1$; From (14) and (16) we obtain

$$
\begin{aligned}
l_{2}=-\frac{m\left(2-2 l_{2}\right)}{M\left(1-l_{2}\right)} & \Rightarrow \quad l_{2} M\left(1-l_{2}\right)=2 m\left(l_{2}-1\right) \\
& \Rightarrow \quad M l_{2}^{2}+(2 m-M) l_{2}-2 m=0 \\
& \Rightarrow \quad\left(M l_{2}+2 m\right)\left(l_{2}-1\right)=0 \\
& \Rightarrow \quad l_{2}=1 \quad \text { or } \quad l_{2}=-\frac{2 m}{M} \\
& \Rightarrow \quad l_{2}=-\frac{2 m}{M}
\end{aligned}
$$

since $l_{2}=1$ contradicts to the condition $l_{2} \neq 1$. Thus

$$
\Delta E_{2 e}=\sqrt{\frac{\tau}{m}\left(1+\frac{2 m}{M}\right)}, \quad \hat{O}_{2 e}=P_{1}-\frac{2 m}{M} P_{2}+P_{3} .
$$

Case 3] Where $l_{2}=1$; $\quad \mathrm{By}$ (14) and (15) we observe that

$$
(\Delta E)^{2}\left(P_{1}+P_{2}+l_{3} P_{3}\right)=\tau\left(1-l_{3}\right)\left(\frac{P_{2}}{M}-\frac{P_{3}}{m}\right)
$$

and so

$$
\Delta E_{3 e}=0, \quad l_{3}=1
$$

therefore, we conclude that

$$
\hat{O}_{3 e}=P_{1}+P_{2}+P_{3}
$$

Finally, as an application of Lemma 2.5 we consider (12), (13), and Theorem 2.6. Then another three of the 'invariant eigen-operator' on the Eq. (10) are

$$
\begin{aligned}
& \hat{O}_{7 e}=x_{1}-x_{3}+P_{1}-P_{3} \\
& \hat{O}_{8 e}=x_{1}-2 x_{2}+x_{3}+P_{1}-\frac{2 m}{M} P_{2}+P_{3} \\
& \hat{O}_{9 e}=x_{1}+\frac{M}{m} x_{2}+x_{3}+P_{1}+P_{2}+P_{3}
\end{aligned}
$$

III. Conclusion

In the harmonic oscillator models, we consider the energy-level gap and deduce the new 'invariant eigenoperators' from the existing eigen-operators.

References

[1] H. Y. Fan and C. Li, Invariant 'eigen-operator' of the square of Schrödinger operator for deriving energy-level gap, Phys. Lett. A, 321(2), 2004, 75-78.
[2] A. B. Klimov, J. L. Romero, J. Delgado, and L. L. Sánchez-Soto, Master equations for effective Hamiltonians, Journal of Optics B: Quantum and Semiclassical Optics, 5(1), 2002.
[3] S. Flügge, Practical Quantum mechanics (Springer-Verlag, Berlin, 1974).
[4] H. Goldstein, Classical mechanics (2 ${ }^{\text {nd }}$ Edition, Addison-Wesley, Reading, MA, 1980).

