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Abstract:  
 In the present study a method is developed to get and explore thermal properties of hot infinite nuclear matter in 

the phase of quark gluon plasma-gas. Two models (modified from MIT model to fit experimental data in nuclei 

collisions) are used as case studies. The models were introduced in the form of parametric barotropic 

equations of state for quark gluon plasma gas. The volumetric specific heat capacity at constant volume 𝑐𝑣, the 

adiabatic speed of sound 𝑐𝑠, and isentropic compressibility 𝜅𝑠 of the quark gluon plasma (QGP) have been 

calculated as continuous functions of total energy density. It is found that the speed of sound increases as the 

energy content of QGP increases, while 𝑐𝑣 and 𝜅𝑠 shows physical behavior like dilute gases.  
Key Word: MIT model; Buprenorphine; volumetric specific heat capacity; isentropic compressibility curve; 

Barotropic Equation of state. 
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I. Introduction  
 The derivation of thermodynamic properties of infinite nuclear matter from equations of state 
(EOS) is not a straightforward from the mathematical point of view, because of hidden assumptions 
included in the formulation of the equation of state. it is standard to assemble three-dimensional tables of 
its properties. A fundamental basis is that full (EOS) tables be thermodynamically reliable so as not to 
produce deceptive and unphysical entropy during hydrodynamical simulations [1]. A few equations of state 
(EOS) of neutron gas and QGP have been adjusted and concentrated as those states of matter are 
fundamental in depicting the layered construction of neutron stars, and as these states of matter are 
difficult to be produced in nuclear labs on the earth [2]. The neutron gas and QGP thermodynamic 
properties are derived directly from the energy per particle of the system [3]. These methods of derivations 
give solid numbers and hide the dependence of thermodynamic properties on the thermodynamic 
parameters like temperature (T), chemical potential (μ), and total energy density (ϵ). In heavy-ion collisions 
and in the inner core of dense neutron stars, Quark gluon plasma (QGP) occurs also in gas-state. Several 
EOS’s are proposed in publications [4]. Equations of the gas-state QGP status are some variations of the 
original bag concept, but are generalized to incorporate data collected from the CERN Large Hadron 
Collider experiments and the Brookhaven Relativistic Strong Ion Collider – U.S.A. In the present work, a 
method is proposed to drive thermodynamic quantities from polytropic equation of state, requires only 
four partial derivatives and the assumption that, the chemical potential (μ) is independent of the 
temperature (T) at constant volume. The procedure is extended to one EOS of neutron gas and four EOS of 
QGP gas. By this method, it is possible to calculate the following thermodynamic quantities; volumetric 
specific heat capacities at constant volume (c_v), speed of sound (c_s), and the isentropic compressibility 
(κ_s). The calculated quantities are functions of total energy density (ϵ) and additionally in chemical 
potential. The first part will present the preferred equations of state for process verification. The second 
section provides a summary of the schema of the proposed system. Third section discusses the application 
of the method to the models and shows the resulting thermodynamic quantities as functions of total energy 
density for each model. 
 

II. EOS models 
MIT bag-model; 

The quarks and gluons in the MIT bag model move freely inside the bag, so the bag compresses its 
parts to form the deconfined phase. The plasma constituents are moving free through large spatial regions 
because of the large number and high energy densities of the quarks and emits hadrons as black body emits 
photons. The quark-antiquark pair creation is enhanced with high temperature. For zero values of all 
conserved charges and non-interacting massless quarks, the EoS of the bag model is given as [4, 5]:  

         p =  
37π2

90
T4 − B             and      ε =  

37π2 

30
T4 + B,                             (1) 
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where, B is the bag constant with positive value.  From equation (1) we can get the following relation:                                                         

                          p[ε(t)] =  
1

3
[ε(t) − 4B].                                         (2)

      
Model 1 (A-bag model): 
    By modify the bag model to fit the thermodynamic functions of the quark gluon plasma to the lattice data, 
the equations of state of QGP should include the following features, linear or quadratic in temperature term 
in the pressure function.  The form of energy density is the same as in the standard bag model but with 
negative value of the bag constant B. The pressure and energy density are given by [4]:   

  p1 =  
σ1

3
T4 − AT − B1                    and        ε1 =  σ1 T

4 + B1,                     (3) 

The pressure as function of energy density is given by the following relation: 

                        P1 =
1

3
[ε1(t) − 4B1] −  A[

ε1(t)−4B1

σ1
]

1

4.                            (4) 

Where the parameters,  σ1 = 4.73, A = 3.93Tc
3 and B1 = −2.37Tc

4  are taken from [5], and  Tc is the critical 
temperature of the quark gluon plasma. 
Model 2 (C-bag model):  
     At high temperatures, equation of state which could be compared quantitatively with the Monte-Carlo 
quantum chromodynamic lattice results and shows the best fit of thermodynamic functions is known as the 
C-bag Model. The pressure and total energy density functions are found in [6]. Pisarski had suggested the 
introduction of the terms proportional to T2. The negative value of the bag constant is also required in this 
model to fit it with the lattice data. The pressure and total energy density functions are given respectively 
as [4]:   
 

       P2 =  
σ2

3
T4 − CT2 − B2,            and       ε2 =  σ2T4 − CT2 + B2,                    (5) 

and the Eos is given by the relation: 

                             P2[ε2(t)] =  
1

3σ2
{[ε2(t) − 4B2] − C[C + √C2 + 4σ2[ε2(t) − B2]]}.                (6) 

Where, σ2 = 13.01, C = 6.06Tc
2 and B2 = −2.34Tc

4,  also from [5]. 
 

III. Method of Four Partial Derivatives: 
             The proposed method introduces consistent and simple formulation of the thermodynamic 
quantities in terms of p, ϵ and their derivatives with respect to T and μ. 
The method assumptions:  
a – The equation of state is polytropic, 
p = p(ϵ),                         (7) 
b- p and ϵ are functions of chemical potential μ and (free parameter, say) temperature T, 
ϵ = f(V, μ),                         (8) 
V = V(μ, T),                         (9) 
That is, 
 p = p(μ, T).                       (10) 
c- The chemical potential μ is independent of T at constant V or the dependence could be negligible, 

(
∂μ

∂T
)

V
= 0,                                       (11) 

d- The internal energy U is proportional to ϵ, 
U = V ϵ,                                       (12) 
e- Validity of thermodynamic laws. 
f- Validity of Maxwell’s relations. 
The focus is on the derivations of the following thermodynamic quantities: 

cS = √(
∂p

∂ϵ
)

S
,                                      (13) 

CV = VcV = (
∂U

∂T
)

V
= V (

∂ϵ

∂T
)

V
,                     (14) 

κS =  −
1

V
(

∂V

∂P
)

S
,                       (15) 

where cS is the speed of sound in matter, cV is the volumetric specific heat capacities at constant volume, U 
is the internal energy of the system, and κS is the compressibility at constant entropy. 
 
 
The Maxwell’s relations used in this work are: 
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(
∂U

∂V
)

S
=  −p,                                   (16) 

(
∂U

∂s
)

V
= T,                    (17) 

The first and the second internal energy equations [7] are: 

(
∂U

∂V
)

T
= T (

∂S

∂V
)

T
− p,                                    (18) 

(
∂U

∂p
)

T
=  −T (

∂V

∂T
)

p
− p (

∂V

∂p
)

T
,                                                 (19) 

The derivatives appears in equations (13-15) will be given in the following paragraphs, in terms of six 

quantities; the first two are p and ϵ, and the other four are (
∂ϵ

∂T
)

μ
, (

∂ϵ

∂μ
)

T
, (

∂p

∂T
)

μ
, (

∂p

∂μ
)

T
, 

-The derivative (
∂ϵ

∂T
)

V
 and (

∂U

∂T
)

V
:  

dϵ = (
∂ϵ

∂μ
)

T
dμ + (

∂ϵ

∂T
)

μ
dT,                              (20) 

(
∂ϵ

∂T
)

V
= (

∂ϵ

∂μ
)

T
(

∂μ

∂T
)

V
+ (

∂ϵ

∂T
)

μ
= (

∂ϵ

∂T
)

μ
,                                  (21) 

Thus, using the identity (12); 

(
∂U

∂T
)

V
=  V (

∂ϵ

∂T
)

V
=  V (

∂ϵ

∂T
)

μ
.                    (22) 

-The derivatives (
∂ϵ

∂p
)

S
, 

(
∂ϵ

∂p
)

S
=  

(
∂ϵ

∂μ
)

T
(

∂μ

∂T
)

S
+(

∂ϵ

∂T
)

μ

(
∂p

∂μ
)

T
(

dμ

∂T
)

S
+(

∂p

∂T
)

μ

=  (
∂ϵ

∂T
)

μ
/ (

∂p

∂T
)

μ
 ,                  (23) 

where (
∂ϵ

∂μ
)

T
≡  (

∂p

∂μ
)

T
≡ 0 for the selected models. There is no explicit dependence on the chemical potential μ. 

-The derivative (
∂V

∂P
)

S
, 

From the mathematical relation [7]; 

(
∂V

∂P
)

S
(

∂p

∂ϵ
)

S
(

∂ϵ

∂V
)

S
= 1,          

It’s true that,   

(
∂V

∂P
)

S
= (

∂ϵ

∂p
)

S
/ (

∂ϵ

∂V
)

S
= −V

1

p+ϵ

(
∂ϵ

∂μ
)

T
(

∂μ

∂T
)

S
+(

∂ϵ

∂T
)

μ

(
∂p

∂μ
)

T
(

dμ

∂T
)

S
+(

∂p

∂T
)

μ

= −V
1

p+ϵ
 ((

∂ϵ

∂T
)

μ
/ (

∂p

∂T
)

μ
) .                           (24)  

The derivations of the matter properties in reference [8] had assumed the dependence of the fermion 
density n, the total energy density ϵ, and the pressure p on the chemical potential (μ) and the temperature 
(T). It was normal among authors working in theoretical and mathematical models to get the isothermal 
compressibility of the equation [9]: 

κT = 9 [
∂

∂ρ
( ρ2 ∂(E/A)

∂ρ
)]

ρ=ρ0,T=0
 .                                 (25) 

Where,  ρ0 is the ground state density of the nucleons in the nucleus of atomic mass number A and nucleon density 

ρ, and E/A is the total energy per particle (i.e. nucleon). This equation is limited to a system at zero absolute 

temperature and requires a mechanical function of  E/A. The method in this work is general to find κs directly 

from the equation of state and at any temperature allowed by the validity of the EoS. Reference [9] uses the 

derivatives (
∂ϵ

∂T
)

μ
, (

∂ϵ

∂μ
)

T
, (

∂p

∂T
)

μ
, (

∂p

∂μ
)

T
, (

∂n

∂T
)

μ
, and (

∂n

∂μ
)

T
 to drive the thermodynamic properties. The suggested 

scheme in this work is more economic and logic as well as based on realistic assumptions. 

 The isentropic compressibility κs  is calculated as function of energy density ϵ for models 1 and 2, and they are 

graphed in figure 3.  The isentropic compressibility κs is found to be ~ 10−12 MeV−4, which means the stiffness 

of the QGP-gas. 

 

IV. Results and discussion 
The behaviors of the thermodynamic properties as functions of energy density ϵ are obtained numerically 

according to the scheme described in section 2. The comparison of the thermodynamic quantities between 

different models reveals peculiarities of different models for infinite nuclear matter. In this research, the behaviors 

of the thermodynamic quantities as functions of the total energy density are shown four neutron gas and two 

different versions of the QGP gas.  

The behavior of the speed of sound squared cs
2 with the energy density ϵ is obtained in figure 1.   The speed of 

sound increases for QGP-matter and takes constants value cs
2 = 0.33 for MIT-model. The curves are below the 

MIT model for models 1,2 and are saturated in regions with high energy densities. 
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Figure 2 gives the behavior of  cv with energy density ϵ  for QGP Models MIT, 1, and 2. The behavior of 

volumetric heat capacity cv is physical for all studied models. The studied EoS’s show large values of heat 

volumetric capacity at constant volume ~ 1010 MeV3. 

The isentropic compressibility κs  is calculated as function of energy density ϵ for models 1 and 2, and they are 

graphed in figure 3.  The isentropic compressibility κs is found to be ~ 10−12 MeV−4, which means the stiffness 

of the QGP-gas. 

 

V. Conclusion  
1- In the present work a method to derive thermodynamic properties from parametric equations of state of infinite 

nuclear matter is discovered. Thermodynamic parameters are derived for two case studies, which describe QGP 

matter, and are different modifications of the MIT-bag model. Smooth functions of quantities; cs, cV, κs are 

derived in terms of p and ϵ, and four derivatives (
∂ϵ

∂T
)

μ
, (

∂ϵ

∂μ
)

T
, (

∂p

∂T
)

μ
, (

∂p

∂μ
)

T
 . It has been found that the speeds of 

sound of in QGP matter increases and saturate in models 1 and 2. It is less than 0.33. 

2- The compressibility κs is obtained directly from the equations of state as smooth functions of T and ϵ. 

3- The derivation scheme in this work is economic in that, it requires only six quantities and derivatives to obtain 

the thermodynamic properties. Other method requires at least eight or more derivatives to get some of the 

thermodynamic properties. 

Future work will extend this schema to accommodate polytropic EOSs in parametric forms and with explicit 

dependence on chemical potentialμ, and the method will be applied to more case studies. 
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                                                                     Figures Captions  
 

Fig.1. The comparison of the speed of sound between model 1, model 2 and MIT bag model quark gluon plasma 

matter. The result of the original bad model calculated with the bag constant B = 150 MeV/fm3. 

 

Fig. 2. Volumetric specific heat capacity  cV of quark gluon plasma matter of MIT - bag model, model 1, and 

model 2. Dotted line is the Volumetric heat capacity cv of model 2 scaled by factor 1.1. 

 

Fig. 3. The comparison of the Isentropic compressibility κs of quark gluon plasma matter, MIT bag model, model 

1 and model 2. The solid line for the MIT-model is scaled by factor 100, and dashed line for model 1is scaled by 

facto 
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Fig. 3. The comparison of the Isentropic compressibility κs of quark gluon 

plasma matter, MIT bag model, model 1 and model 2. The solid line for 

the MIT-model is scaled by factor 100, and dashed line for model 1is 

scaled by factor 10. 
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