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Abstract:   This article derives a simple linear model for semiconductor bandgap variation with temperature.  
The model is based on the theorem of equipartition of energy for the electrons and holes at thermal equilibrium 
which gives the average kinetic energy of an electron or hole to be (3/2)kT.  The calculated bandgaps at 
temperatures of 100K to 600K of Silicon matches with the observed experimental values to within ±1%.  The 
model is applicable to bandgaps of all covalently bonded semiconductors at high temperatures and is possibly 
valid for the electron work functions of metals and the oxide/semiconductor band offsets as well. 
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I. Introduction 
The study of the variation of semiconductor bandgap with temperature has pertinent applications of 

quantum computers that operate at very low temperatures of less than 100K, and the high temperature 
electronics using compound semiconductors such as Silicon Carbide, Gallium Nitride, Boron Nitride, 
Germanium Carbide and Diamond for power and high frequency applications.  Pearson and Bardeen in their 
research paper of March 1949 assumed a linear variation of semiconductor bandgap, EG with temperature.  They 
obtained a value for dEG/dT as -3.0 x 10-4 eV/K experimentally for Silicon with EG (0K) as 1.115 eV [1].  Just to 
mention, Late John Bardeen was a two-time Nobel Laureate for Physics.  H.Y. Fan in 1951 calculated the effect 
of lattice vibrations in producing shift of the energy levels in Silicon which results in a temperature variation of 
the energy gap in semiconductors.  He found dEG/dT for Silicon to be -3.58 x 10-4 eV/K close to the 
experimentally obtained value of Pearson and Bardeen given above [2].  The research paper by Thurmond in 
1975 gives the variation of EG of Si with temperature in Kelvin based on Varshni’s equation of 1967 [3-4].   
Varshni’s equation is developed around the experimentally measured absorption edge spectrum of Si and Ge by 
G.G. Macfarlane et al. in 1958-59 up to 4.2 K temperature [5-6].  The present article shows that while the 
Varshni’s non-linear equation accurately describes the temperature variation of semiconductor bandgap, the 
simpler linear model describes the temperature variation of the semiconductor bandgap for high temperatures 
greater than 100K and up to 600K within ±1% of the experimental values obtained from the Varshni’s equation.  
This temperature range is pertinent to the high temperature electronic applications.  It also describes the 
behaviour of the Fowler-Nordheim (FN) temperature model as shown with the example of 4H-SiC MOS device 
in an earlier study where the SiO2/4H-SiC conduction band offset (CBO) varies as -2.8 x 10-4 eV/K in the 100K 
to 600K temperature range [7]. 

 
II. Theory 

If one considers a parabolic band structure of a semiconductor, then the electrons in the conduction band are 
described by the energy equation:  

𝐸(𝑝) = 𝐸 + ∗ = 𝐸 + 𝑚∗ 𝑣    (1);  

and the holes in the valence band are described by the energy equation: 

𝐸(𝑝) = 𝐸 − ∗ = 𝐸 − 𝑚∗ 𝑣    (2). 

Subtracting equation (1) from (2) and applying the theorem for equipartition of energy of electrons and holes at 
thermal equilibrium, gives [8]: 

 𝐸 (𝑇) = 𝐸 (0𝐾) − 3𝑘𝑇      (3). 
𝐸 (𝑇) = 𝐸 (300𝐾) +  3𝑘(300 − 𝑇)/𝑞   𝑖𝑛 𝑒𝑉 (4).   

This linear model of the semiconductor bandgap variation with temperature is mentioned in words in 
Macfarlane et al., but the above equation derivation and calculations of bandgap variation with temperature 
based on this model are not presented [5].  In this model, EG(T) is taken as a positive number.   Actually, the 
bandgap should represent a negative potential energy of the electrons in the conduction band relative to the 
valence band at zero energy. The bandgap increases in magnitude at lower temperatures than 300K and reduces 
at higher temperatures.  The change in bandgap at any temperature T from the value at 300K will be the same 
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for all non-polar semiconductors given by the second term in the above equation.  At 0K, the change is equal to 
0.0775 eV.  This gives a linear change of -2.59 x 10-4 eV/K.  It is nearly the same as that obtained 
experimentally by Pearson and Bardeen [1].  The above equation can be further simplified as follows: 

𝐸 (𝑇) = 𝐸 (300𝐾) + 0.0775 − (𝑇)  𝑖𝑛 𝑒𝑉 (5).  

For Si, taking the value of EG (300K) as 1.12 eV, the above equation will become: 
𝐸 (𝑇) = 1.1975 − (2.59 𝑥10  )𝑥 𝑇        𝑓𝑜𝑟 𝑆𝑖. (6). 

The non-linearity which exists at low temperatures does not show in the above linear equation (6), where the 
measured value of the Si bandgap at about 0K is 1.17 eV instead of 1.1975 eV calculated from the linear 
equation.  The error at 0K because the non-linearity in the absorption data by Macfarlane is not expressed in the 
proposed linear equation.  This can now be compared to the Varshni’s equation for Silicon that fits the 
experimental data of Macfarlane et al., and is given as [3-5, 9]: 

𝐸 (𝑇) = 1.17 −
.   

( )
        𝑓𝑜𝑟 𝑆𝑖  (7).  

Here, 1.17 eV is the measured bandgap of Si at about 0K [5].  The Debye temperature is 636K. Below a 
temperature of 63.6K, the equation is expected to be non-linear varying as T2, and above a temperature of 
63.6K, the equation is expected to be linear with T [3].  It has been demonstrated that the linear equation is 
within ±1% of the experimental values from the absorption edge spectrum of Si in the temperature range of 
100K to 600K as presented in the Table below in the Results and Discussion section III.  This temperature range 
is applicable to the FN temperature model also, which at very low temperatures may also follow the non-linear 
model, when the conduction band offset of the oxide/semiconductor interface may vary as T2 [7].  The intrinsic 
carrier concentration for Si at 300K is improved to 1.01 x 1010/cm3 from an earlier value of 1.45 x 1010/cm3 [10].  
The values of density of states in the conduction band Nc, and the density of states in the valence band Nv, for Si 
at 300K are 2.8 x 1019/cm3 and 1.04 x 1019/cm3 [9].  These values give the bandgap of Si at 300K as 1.10 eV 
when the formula below is used: 

𝐸 = 𝑙𝑛     𝑖𝑛 𝑒𝑉    (8).  

Here, k is the Boltzmann constant as 1.3806 x 10-23 Joules/Kelvin, T is the temperature in Kelvin so that kT is 
the energy in Joules and q is the energy of the electron as 1.602 x 10-19 Joules per eV.  Another report of Nc and 
Nv values gives Nc as 3.2 x 1019/cm3 and Nv as 1.8 x 1019/cm3.  These values along with the intrinsic carrier 
concentration value of 1.01x 1010/cm3 at 300K give the Si bandgap at 300K as 1.118 (or 1.12) eV.  The 
measured value by G.G. Macfarlane et al. in 1958 from the absorption edge spectrum of Si is also 1.1209 to 
1.1256 eV at 300K, given that the exciton dissociation energy varies from 10 meV to 14.7 meV [4-5].  A critical 
assessment of the relevant scientific literature by M. A. Green also places the value of Si bandgap at 300K as 
1.1242 eV [11]. 
 

III. Results and Discussion 
The calculated values for the Si bandgap at different temperatures in Kelvin based on the Varshni’s 

non-linear equation (7) and the equation (6) from the linear model based on the theorem for equipartition of 
energy are tabulated below.  The calculated bandgap from the linear model is within ±1% of those from the 
Varshni’s non-linear equation in the 100K to 600K temperature range.  The author has made a simple model for 
temperature variation of the Fowler-Nordheim electron tunnelling current in 4H-SiC MOS device from which 
the conduction band offset variation with temperature has been found to be -2.9 (-2.8 more precisely) x 10-4 
eV/K.  This is similar to the bandgap variation with temperature of Si found by Pearson and Bardeen  

 
Table I.  The calculated Silicon bandgaps at different temperatures from the non-linear and linear equations. 

Temperature in Kelvin (K) 
Si bandgap calculated from 
Varshni’s equation , in eV 

Si bandgap calculated by 
the linear equation 

suggested by the author, in 
eV  

Percentage error from 
the values in column 

2 
Comments 

0 1.17 1.1975 2.35  
100 1.1635 1.1716 0.70 The calculated 

bandgap from the 
linear model is 

within ±1% from 
100K to 600K. 

200 1.1473 1.1457 -0.14 
300 1.1245 1.1198 -0.42 
400 1.0969 1.0939 -0.27 
500 1.0659 1.0680 0.20 
600 1.0322 1.0421 0.96 
700 0.9965 1.0162 1.98  
800 0.9591 0.9903 3.25  

 
The change in bandgap with temperature in the linear model is valid for all covalently bonded 

semiconductor.  Only the value of bandgap at 300K will be different for different semiconductors.  If one 
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considers a metal semiconductor contact and find that the bandgap of the semiconductor varies as -2.59 x 10-4 
eV/K and the metal Fermi level remains the same, then the vacuum level above the semiconductor will be 
shifted up or down by the same amount and so the electron work function of the metal will also vary as -2.59 x 
10-4 eV/K.  However, Mohamed Akbi has shown the variation as -4.58 x 10-4 eV/K by taking an example of Ag 
contact on ZnO [12].   

This study is giving indications that the electron work function of metals, the semiconductor bandgaps 
and the oxide/semiconductor band offsets may vary with temperature by the same non-linear Varshni’s equation 
at low temperatures below 100K and may vary linearly with temperature above 100K to at least up to 600K.  
The linear model gives a dEG/dT value of about -2.59 x 10-4 eV/Kelvin for the semiconductor bandgap.  The fact 
that the SiO2/4H-SiC conduction band offset changes at nearly the same rate of -2.8 x 10-4 eV/K indicates that 
the change in the bandgap with temperature for the 4H-SiC is mainly in the conduction band [7].  This may be 
true for other semiconductors as well.  The electron effective mass will increase with temperature [5].  The 
direct proportionality of energy and mass has been given by Einstein in his mass-energy equivalence equation 
E=mc2.  Here, E is the constant intrinsic energy for a constant rest mass m, which Einstein originally derived, 
and E is relativistic total energy for a moving relativistic mass m.  Relativistic mass is the rest mass times the 
Lorentz factor.  So, when the temperature increases, the average kinetic energy of the electron increases as 
(3/2)kT, and the effective mass of the electron also increases by showing a decrease in the drift velocity [13], 
demonstrating the same direct proportionality between energy and mass as in Einstein’s equation.  The bandgap 
of thermal SiO2 at 300K is very large at 8.93 eV.  A 0.0775 eV change in bandgap at 600K from the linear 
model will cause a less than 1 % change in the effective masses using the relation dE/E equals dm/m, where dE 
and dm are differential energy and mass.  Thus, the electron and light hole effective masses in thermal SiO2 will 
remain stable with temperature, although it can change by about 10% in Si [5].  The low temperatures are 
important for quantum computers and the high temperatures are important for high temperature electronics 
based on semiconductors such as Silicon Carbide, Gallium Nitride, Boron Nitride, Germanium Carbide and 
Diamond.  The linear model is applicable to the high temperature electronics in the range of 100K to 600K, and 
so the average kinetic energy change of a conduction electron of (3/2)kT with temperature is appropriate for the 
FN temperature model [7].  
 

IV. Conclusions 
The linear model for the variation of semiconductor bandgap with temperature based on the theorem of 

equipartition of energy at thermal equilibrium is a simple model that is applicable for high temperature 
electronics in the range of 100K to 600K.  In Si, the semiconductor bandgap calculated from the simple model is 
within ±1% of the observed experimental data and the calculated bandgaps from the non-linear Varshni’s 
equation from 100K to 600K.  The linear model appears to be applicable to electron work functions of metals 
and oxide/semiconductor band offsets also, apart from its applicability to the semiconductor bandgaps at high 
temperatures.  The electron and hole effective masses in thermal SiO2 have a negligible change with temperature 
due to its very wide bandgap of 8.93 eV at 300K. 
 

References 
[1]. G.L. Pearson, J. Bardeen, “Electrical properties of pure silicon and silicon alloys containing Boron and Phosphorus”, Physical 

Review, 1949;75(5):85-883. 
[2]. H.Y. Fan, “Temperature dependence of the energy gap in semiconductors”, Physical Review, 1951;82(6):900-905. 
[3]. Y.P. Varshni, “Temperature dependence of the energy gap in semiconductors”, Physica, 1967;34:149-154. 
[4]. C.D. Thurmond, “The standard thermodynamic functions for the formation of electrons and holes in Ge, Si, GaAs, and GaP”, J. 

Electrochemical Soc., Solid-State Science and Technology, 1975;122(8):1133-1141. 
[5]. G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts, “Fine structure in the absorption-edge spectrum of Si”, Physical 

Review, 1958;111(5):1245-1254. 
[6]. G.G. Macfarlane, T.P. McLean, J.E. Quarrington, V. Roberts, “Exciton and phonon effects in the absorption spectra of Germanium 

and Silicon”, J. Phys. Chem. Solids, 1959;8:388-392. 
[7]. R.K. Chanana, “A simple model for the temperature dependence of the Fowler-Nordheim carrier tunneling current through the 

oxide in a metal-oxide-semiconductor device in accumulation or inversion”, IOSR-J. Appl. Physics, 2020;12(4):29-34. 
[8]. S.M. Sze, “Carrier Transport Phenomenon” in Semiconductor Devices, Physics and Technology, John Wiley and Sons, New York, 

1985;30-69, pp.30-31. 
[9]. S.M. Sze, “Energy Bands and Carrier Concentration” in Semiconductor Devices, Physics and Technology, John Wiley and Sons, 

New York, 1985;1-29. 
[10]. A.B. Sproul, M.A. Green, J. Zhao, “Improved value for the silicon intrinsic carrier concentration at 300K”, Appl. Phys. Letts, 

1990;5(3):255-257. 
[11]. M. A. Green, “Intrinsic concentration, effective densities of states, and effective mass in silicon”, J. Appl. Phys., 1990;67(6):2944-

2954. 
[12]. Mohamed Akbi, “On the temperature dependence of the photoelectric work function of contact materials”, 27th International 

Conference on Electrical Contacts, 2014, June 22-26, Dresden, Germany. 
[13]. C.Y. Duh, J.L. Moll, “Temperature dependence of hot electron drift velocity in silicon at high electric field”, Solid-State 

Electronics, 1968;11:917-932. 
 
 


