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Abstract 
Take up some examples of multi-valued structure of the governing Hamiltonians namely, the branched 

Hamiltonians are explored, as recently advocated by Shapere and Wilczek.These are in fact cases of switchback 

potential, in the continuous interpolation of discrete time dynamical systems that exhibit chaotic behaviour 

enabling incorporation of a canonical quasi-Hamiltonian formalism. 
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I. Introduction 
Alongside the study of standard Hamiltonians, the role of non-conventional Hamiltonians has aroused 

curiosity in recent times especially in their applicability to problems of nonlinear dynamics pertaining to 

autonomous differential equations, in shallow water-wave context and in certain types of quantum mechanical 

models particularly, belonging to parity-time ( 𝒫𝒥 )-symmetric schemes [1] and in their relativistic versions [2]. 

The subject of branched Hamiltonians [3-6] belongs to non-conventional arena of mathematical physics which 

can be derived from Legendre transformed Lagrangians where velocity dependence is not convex in character and 

leads to Riemann surface phase-space structure and to certain interesting topological issues. The existence of 

branched Hamiltonians which also has relevance in the continuous interpolation of discrete time dynamical 

systems that exhibit chaotic behaviour enabling incorporation in canonical quasi-Hamiltonian set up. 

          Hamiltonians that are multivalued functions of momenta present some of the not so well understood 

ambiguities of quantization. Branched Hamiltonians in the classical context, and their quantization, have been 

recently proposed by Shapere and Wilczek [3-5] and is currently an area of active interest as evidenced in a series 

of papers by Curtright and Zachos [7-12] and other works [13-15]. In this context a new class of innovations of 

the description and simulations of quantum dynamics has emerged in connection with the possible specific role 

of the models of physical systems. In such cases the underlying Lagrangian possesses time derivatives in excess 

of quadratic powers. The use of these models leads, on both classical and quantum grounds, to the necessity of a 

re-evaluation of the dynamical interpretation of the momentum 𝑝 which, in principle, becomes a multiple function 

of velocity 𝑣. 

             In the present work, I have searched for situations where multi-valued Hamiltonians occur that result from 

the enforcement of the Legendre transform on the non-standard Lagrangians in the sense that the velocity 

dependence is not convex. Early works by Curtright and Zachos [7-12] and by Bagchi et al. [16] pointed out that 

multi-valued Hamiltonians arose in the continuous interpolation of discrete time dynamical systems that invariable 

had an underlying chaotic behaviour. The natural framework of study would then be a quasi-Hamiltonian 

formalism. 

 

II. A model of branched Hamiltonians 
Recently, Shapere and Wilczek considered interesting models with non-convex Lagrangians in velocity[3-5]. To 

demonstrate, let us consider a simple model [3, 4], 

𝐿 =
1

4
𝑣4 −

𝜅

2
𝑣2 (1) 

For the interesting case of 𝜅 > 0, the Lagrangian is a non-convex function of velocity. Thus, the 
corresponding conjugate momentum is 

𝑝 =
𝜕𝐿

𝜕𝑣
= 𝑣3 − 𝜅𝑣 = 𝑓(𝑣) (2) 

is not monotonic in velocity, where the function 𝑓(𝑣) stands for the Legendre map. Then, making the conventional 

Legendre transformation gives the corresponding Hamiltonian as a function of velocity, 
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𝐻 =
3

4
𝑣4 −

𝜅

2
𝑣2 (3) 

which is a multi-valued function (with cusps) in conjugate momentum 𝑝, since each given 𝑝 corresponds to one 

or three values of 𝑣 as shown in Eq. (2). 

Hence, for systems with a non-convex Lagrangian such as (1), the construction of single-valued Hamiltonian in 

conjugate momentum space is challenging. Related issues also arise in cosmology models [17, 18], in extensions 

of Einstein gravity involving topological invariants, and in theories of higher-curvature gravity [19]. 

 

 
Figure 1: The Legendre mapping function 𝑓 from 𝑣 to 𝑝 for the non-convex Lagrangian Eq. (1) with 𝜅 > 0. 

 

Thus, a Legendre transformation from (𝑥, 𝑝, 𝐻) to (𝑥, 𝑣, 𝐿) is complicated for nonconvex 𝑉(𝑝). The resulting 𝐿 

is multi-valued, in general, with several branches. 

Alternatively, if you start with a given single-valued 𝐿(𝑥, 𝑣), then you too will face similar complication if you 

are dealing with 

𝐿 = 𝑥2 − 𝑉(𝑣) (4) 
instead of the usual 

𝐿 = 𝑣2 − 𝑉(𝑥). (5) 
So, starting from single-valued 𝐻(𝑥, 𝑝) or starting from single-valued 𝐿(𝑥, 𝑣)-either way-if the 𝑝 or 𝑣 dependence 

is non-convex then multi-valued, branched functions will arise upon Legendre transforming between Hamiltonian 

and Lagrangian formulations. 

       Several simple Lagrangian models have been considered here that lead to double valued Hamiltonian systems. 

Let us start with an example where the velocity dependence of 𝐿 is given by a Gaussian. This example illuminates 

many generic features of branched Hamiltonians, in addition to its more specific peculiarities. The Gaussian 

model, as a quantum system cannot lead to a solution in closed form, therefore a different class of  
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Figure 2: The Hamiltonian Eq. (3) versus momentum which is multivalued function of 𝑝 for the non-convex 

Lagrangian Eq. (1) with 𝜅 > 0. 

 

models are resorted to where analytic results can be obtained. One of this class is modified to get a pair of 

Hamiltonians that comprise a supersymmetric quantum mechanical system [5, 20]. 

Let us consider a non-convex 𝑣-dependent dimensionless Gaussian Lagrangian: 

𝐿(𝑥, 𝑣) = (1 − exp⁡(−
𝑣2

2
)) − 𝑉(𝑥) (6) 

which allows the momentum to be determined by the relation 

𝑝(𝑣) =
𝜕𝐿

𝜕𝑣
= 𝑣⁡exp⁡(−

𝑣2

2
) (7) 

Here we note that 𝐿 is a union of three convex functions defined on the three 𝑣 intervals (−∞,−1], [−1,1] and 

[1,∞). The kinetic energy of the model takes the classic shape of a fedora hat profile, when it is plotted against 𝑣 

(see Figure 3). 

For this model, 𝑣 and 𝑝 always have the same sign, and clearly −∞ ≤ 𝑣 ≤ +∞. However, due to the Gaussian 

suppression in 𝑣, the momentum 𝑝 is confined to a finite interval as given by the maximum and minimum of (7), 

namely, 𝑝(𝑣)|𝑣=±1 = ±
1

√𝑒
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Figure 3: Kinetic energy, (1 + 𝑣2)𝑒𝑥𝑝⁡(
−𝑣2

2
), versus 𝑣 for the Gaussian model. 

Here we get two values for 𝐻 at every value of 𝑝 ∈ (−
1

√𝑒
,
1

√𝑒
). To get this double-valued 𝐻, we invert (7), and 

obtain 

𝑣(𝑝) = ±√−Lambert𝑊(−𝑝2) (8) 

        For real 𝑣 it is required to return negative values for the Lambert function, with negative argument, so either 

the principal branch Lambert𝑊(0, 𝑧) or the lower branch Lambert𝑊(−1, 𝑧) will do, with −
1

𝑒
≤ 𝑧 ≤ 0 i.e −

1

𝑒
≤

−𝑝2 ≤ 0.  That is to say, the momentum lies in the finite interval −
1

√𝑒
≤ 𝑝 ≤

1

√𝑒
.  So 𝑣(𝑝) is multivalued, 

because of the square root and the Lambert function branches. 

The solution of 

𝑦𝑒𝑦 = 𝑧 (9) 
is 

𝑦(𝑧) = {
 Lambert 𝑊(𝑘, 𝑧)  if 𝑧 ≠ 0

0  if 𝑧 = 0
(10) 

where 𝑘 ∈ ℤ and 𝑘 = 0, 𝑘 = −1 give the two real branches as shown in Figure 4 
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Figure 4: Lambert 𝑊(0, 𝑧) and Lambert 𝑊(−1, 𝑧) in red and blue, respectively. 

 

The velocity dependent term is a union of three convex functions defined on 𝑣 ∈ (−∞,−1], [−1,1] and [1,∞), 
as shown below in red, blue, and green respectively (see Figure 5). 

Therefore, the Hamiltonian will be multi-valued. 
𝐻(𝑥, 𝑣) = 𝑝𝑣 − 𝐿(𝑥, 𝑣) (11) 

Using (7), so as a function of 𝑣 

𝐻(𝑥, 𝑣) = (1 + 𝑣2)exp⁡(
−𝑣2

2
) + 𝑉(𝑥) − 1 (12) 

 

 

Figure 5: The model given by 𝐿(𝑥, 𝑣) + 𝑉(𝑥) = 1 − 𝑒𝑥𝑝⁡(−
𝑣2

2
). 
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But we want 𝐻(𝑥, 𝑝). So, we need 𝑣(𝑝). Using (8), the result for 𝐻(𝑥, 𝑝) is multivalued on this momentum 

interval, because of the square root and the Lambert function branches (see Figure 6) 

 

𝐻 = ±𝑝(√−Lambert𝑊(−𝑝2) +
1

√−Lambert𝑊(−𝑝2)
) + 𝑉(𝑥) − 1 (13) 

 

Both the square root and Lambert function have two real branches. Therefore, four values of 𝐻 may be obtained 

at any given momentum. However, the square root and Lambert 𝑊 branches are always correlated. Therefore, if 

we consider the (𝑝(𝑣), 𝐻(𝑥, 𝑝(𝑣))) curve in parametric form on the (𝑝, 𝐻) plane, using 𝑣 as the parameter, so that 

the Gaussian model's Hamiltonian is only the double-valued for all 𝑝 ∈ (−1/√𝑒, 1/√𝑒). 
So 𝐻(𝑥, 𝑝) may be considered as the union of three convex functions of 𝑝:𝐻−, 𝐻0 and 𝐻+for 𝑝 ∈

[−1/√𝑒, 0], [−1/√𝑒, 1/√𝑒] and [0,/1√𝑒], as shown below in red, black, and green, respectively. Classically, a 

particle switches 𝐻 during its trajectory. Different branches of 𝐻 control the motion at different times. Therefore, 

 

 
Figure 6: The real branches oh 𝐻 − 𝑉 versus 𝑝 ∈ [−1/√𝑒, 1/√𝑒]. 

 
when a particle, governed by one branch of 𝐻 moves on a trajectory, a classical particle generally encounters one 

of the Hamiltonian cusps in finite time, and then switches to be governed by another branch of 𝐻. This switching, 

leads trajectories to intersect and cross in the figure. This not possible for a system controlled by singlevalued 

Hamiltonian, as is well-known. But it is possible when different Hamiltonian branches govern the motion for the 

different curves that cross. A system governed by a multi-valued Hamiltonian usually does exhibit this noval 

feature. We have called such trajectories "quasi-Hamiltonian" flows. 

 

III. Summary 
To summarize, here I have displayed some simple non-standard Lagrangians models which, by virtue of 

non-convexity in their velocity dependence and showed the Hamiltonian suited for it has a non-conventional 

double-valued structure due to the presence of a velocity-dependent potential. So double-valued 𝐻(𝑥, 𝑝) may be 

considered as the union of three convex functions of 𝑝:𝐻−, 𝐻0 and 𝐻+ for 

𝑝 ∈ [−1/√𝑒, 0], [−1/√𝑒, 1/√𝑒] and [0,/1√𝑒], as showed in a previous Figure in red, black and green, 

respectively. 
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