Differential Operators Invariant under Lorentz Transformation

Krishna S. Amur ${ }^{1}$ and Christopher R ${ }^{2}$
${ }^{1}$ Former Professor of Mathematics, Karnatak University Dharwad,- 580003, India. Email:krishna.s.amur@gmail.com
${ }^{2}$ Associate Professor, Department of Mathematics, Kittel Science College, Dharwad-580001, India.

Abstract

Using differential forms, we obtain, in an entirely new way, expressions for differential operators: gradient, divergence and curl which are invariant under Lorentz transformation. The expression for curlF of a vector field F contains curl \bar{F} as a term, where \bar{F} is a spatial part of F and the other term in it is related to the direction of time. This is but natural in 4-dimensional space-time structure. We have not found such a simple form for the expression of curlF in the existing literature on Special Relativity. In addition we give expressions in spherical polar coordinates for the above mentioned differential operators. In this article we have used the standard Lorentz transformation in which the moving frame moves along one of the coordinate axes of the stationary frame. Considering a more general form of Lorentz transformation in which the moving frame moves with uniform velocity in an arbitrary direction, the expressions of the differential operators were obtained earlier [2]. But the computations involved there were too heavy and complicated for an interested reader (especially if he belongs to a faculty of physical sciences). Computations in this article are very few in comparison and the new way of derivation may inspire further investigation in the field of Special Relativity. In order to understand the computations given in this article, all that one needs to know is that the product of differentials $d x, d y$ etc. is skew symmetric and it is indicated by inserting a wedge between them. Thus $d x \wedge d y=-d y \wedge d x$. Another property is that of Hodge star operator [3]. About this, the details are given where necessary.

I. Preliminaries

Minkowski space (M, η) is a globally hyperbolic Lorentz manifold with a flat metric η. Consider a coordinate $\operatorname{system}\left(x^{0}, x^{1}, x^{2}, x^{3}\right)$ in the underlying manifold E^{4} with $x^{0}=c t$. We assume that the velocity of light c is unity, so that $x^{0}=t$ has the unit of length. The x^{1}, x^{2}, x^{3} are space coordinates. The basis vectors $e_{\alpha}=\frac{\partial}{\partial x^{\alpha}}$, $\alpha=0,1,2,3$ satisfy:

$$
\begin{align*}
\eta\left(e_{\alpha}, e_{\beta}\right) & =\eta_{\alpha \beta}=-1 \quad \text { if } \alpha=\beta=0 \tag{1.1}\\
& =1 \quad \text { if } \alpha, \beta=1,2,3 \\
& =0 \quad \text { if } \quad \alpha \neq \beta
\end{align*}
$$

Standard LT is a transformation from one system of coordinates x^{α} in a Lorentz frame Σ into another system $x^{\beta^{\prime}}$ in a Lorentz frame Σ^{\prime} which is moving with uniform velocity v along x^{1}-axis. The transformation equations are given by [4], [5],

$$
\begin{equation*}
x^{\beta^{\prime}}=\wedge_{\alpha}^{\beta^{\prime}} x^{\alpha}, x^{\alpha}=\wedge_{\beta^{\prime}}^{\alpha} x^{\beta^{\prime}} \tag{1.2}
\end{equation*}
$$

where we have followed Einstein summation convention for repeated indices and the coefficient matrices are constant matrices which satisfy:

$$
\begin{equation*}
\wedge_{\gamma}^{\alpha^{\prime}} \wedge_{\delta}^{\beta^{\prime}} \quad \eta_{\alpha^{\prime} \beta^{\prime}}=\eta_{\gamma \delta} \tag{a}
\end{equation*}
$$

b) $\quad \wedge_{\gamma^{\prime}}^{\alpha} \wedge_{\delta^{\prime}}^{\beta} \eta_{\alpha \beta}=\eta_{\gamma^{\prime} \delta^{\prime}}$
c) $\quad \wedge_{\beta}^{\alpha^{\prime}} \wedge_{\gamma^{\prime}}^{\beta}=\delta_{\gamma^{\prime}}^{\alpha^{\prime}}$
d) $\quad \wedge_{\beta^{\prime}}^{\alpha} \wedge_{\gamma}^{\beta^{\prime}}=\delta_{\gamma}^{\alpha}$

Note that $\eta_{\alpha^{\prime} \beta^{\prime}}$ are defined as in (1.1) by setting:

$$
\eta_{\alpha^{\prime} \beta^{\prime}}=\eta\left(e_{\alpha^{\prime}}, e_{\beta^{\prime}}\right)
$$

with

$$
e_{\alpha^{\prime}}=\frac{\partial}{\partial x^{\alpha^{\prime}}}
$$

Since the coefficient matrices in (1.2) are constants we have:

$$
\begin{align*}
& d x^{\beta^{\prime}}=\wedge_{\alpha}^{\beta^{\prime}} d x^{\alpha} \tag{1.4}\\
& d x^{\alpha}=\wedge_{\beta^{\prime}}^{\alpha} d x^{\beta^{\prime}}
\end{align*}
$$

Hence

$$
\begin{equation*}
\eta_{\alpha^{\prime} \beta^{\prime}} d x^{\alpha^{\prime}} d x^{\beta^{\prime}}=\eta_{\alpha^{\prime} \beta^{\prime}} \wedge_{\gamma}^{\alpha^{\prime}} \wedge_{\delta}^{\beta^{\prime}} d x^{\gamma} d x^{\delta}=\eta_{\gamma \delta} d x^{\gamma} d x^{\delta} \tag{1.5}
\end{equation*}
$$

We get

$$
\begin{align*}
d \tau^{2} & =-\eta_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{1.6}\\
& =\left(d x^{0}\right)^{2}-\left(d x^{1}\right)^{2}-\left(d x^{2}\right)^{2}-\left(d x^{3}\right)^{2}
\end{align*}
$$

Then (1.5) shows that $d \tau$ is invariant under a Lorentz transformation. τ is called the proper time . The coordinate expression of a world line $X(\tau)$ of a particle is given by:

$$
\begin{equation*}
X(\tau)=x^{\alpha} e_{\alpha}=x^{\beta^{\prime}} e_{\beta^{\prime}} \tag{1.7}
\end{equation*}
$$

Since the basis vectors do not depend on the parameter τ, we have $d x^{\alpha} e_{\alpha}=d x^{\beta^{\prime}} e_{\beta^{\prime}}$. Using (1.4) we obtain:

$$
\begin{equation*}
d x^{\beta^{\prime}} e_{\beta^{\prime}}=\wedge_{\gamma}^{\beta^{\prime}} d x^{\gamma} e_{\beta^{\prime}}=d x^{\gamma} e_{\gamma}, \text { so } \wedge_{\gamma}^{\beta^{\prime}} e_{\beta^{\prime}}=e_{\gamma} \tag{1.8}
\end{equation*}
$$

The inner product in Σ is given by:

$$
\begin{equation*}
<e_{\alpha}, e_{\beta}>=e_{\alpha} \cdot e_{\beta}=\eta_{\alpha \beta} \tag{1.9}
\end{equation*}
$$

and that in Σ^{\prime} is given by:

$$
<e_{\alpha^{\prime}}, e_{\beta^{\prime}}>=e_{\alpha^{\prime}} \cdot e_{\beta^{\prime}}=\eta_{\alpha^{\prime} \beta^{\prime}}
$$

$\eta_{\alpha \beta}$ and $\eta_{\alpha^{\prime} \beta^{\prime}}$ are related to each other as in (1.3-a,b).
Invariance of volume element $d V$ and that of star operator $* d X$ under LT.
Explicit expressions for $\wedge_{\beta}^{\alpha^{\prime}}$ and $\wedge_{\beta^{\prime}}^{\alpha}$ are as given below, [4]:

$$
\left\|\wedge_{\beta}^{\alpha^{\prime}}\right\|=\left\|\begin{array}{cccc}
\Gamma & -\Gamma v & 0 & 0 \tag{1.10}\\
-\Gamma v & \Gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\| \quad \text { and } \quad\left\|\wedge_{\beta^{\prime}}^{\alpha}\right\|=\left\|\begin{array}{cccc}
\Gamma & \Gamma v & 0 & 0 \\
\Gamma v & \Gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right\|
$$

Using these and (1.2) we have:

$$
\begin{equation*}
x^{0}=\Gamma x^{0^{\prime}}+\Gamma v x^{1^{\prime}}, x^{1}=\Gamma v x^{0^{\prime}}+\Gamma x^{1^{\prime}}, x^{2}=x^{2^{2}}, x^{3}=x^{3^{\prime}}, x^{0}=c t, \Gamma=\frac{1}{\sqrt{1-v^{2}}} \tag{1.11}
\end{equation*}
$$

where, c is assumed to be 1 . We show that the volume element $d V=d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{0}$ is invariant under LT. We have from (1.11):

$$
\begin{align*}
d x^{1} \wedge d x^{0} & =\left(\Gamma v d x^{0^{\prime}}+\Gamma d x^{1^{\prime}}\right) \wedge\left(\Gamma d x^{0^{\prime}}+\Gamma v d x^{1^{\prime}}\right) \tag{1.12}\\
& =\Gamma^{2} v^{2} d x^{0^{\prime}} \wedge d x^{1^{\prime}}+\Gamma^{2} d x^{1^{\prime}} \wedge d x^{0^{\prime}} \\
& =\left(-\Gamma^{2} v^{2}+\Gamma^{2}\right) d x^{1^{\prime}} \wedge d x^{0^{\prime}} \\
& =d x^{1^{\prime}} \wedge d x^{0^{\prime}}, \text { since } \quad \Gamma^{2}\left(1-v^{2}\right)=1
\end{align*}
$$

Since $x^{2}=x^{2^{\prime}}, \mathrm{x}^{3}=x^{3^{\prime}}, \quad d x^{2} \wedge d x^{3}=d x^{2^{\prime}} \wedge d x^{3^{\prime}}$
and

$$
\begin{aligned}
d V & =d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{0} \\
& =d x^{2} \wedge d x^{3} \wedge d x^{1} \wedge d x^{0} \text { using skew symmetric property of wedge product }
\end{aligned}
$$

$$
\begin{aligned}
& =d x^{2^{\prime}} \wedge d x^{3^{\prime}} \wedge d x^{1^{\prime}} \wedge d x^{0^{\prime}} \quad \text { using (1.12) } \\
& =d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{3^{\prime}} \wedge d x^{0^{\prime}}=d V^{\prime}
\end{aligned}
$$

that is, the volume element is invariant under LT.
Now we show that $* d X$ is invariant, where $*$ is Hodge's star operator. For details of $*$ operator see [3].
Let $X^{\prime}=x^{\alpha^{\prime}} e_{\alpha^{\prime}}$ be the position vector of a point $X=x^{\alpha} e_{\alpha}$ which has undergone LT.
Then
(1.13) $\quad * d X=* d x^{\alpha} e_{\alpha}, * d X^{\prime}=* d x^{\alpha^{\prime}} e_{\alpha}$

We have [3]

$$
\begin{aligned}
* d X^{\prime}= & d x^{2^{\prime}} \wedge d x^{3^{\prime}} \wedge d x^{0^{\prime}} e_{1^{\prime}}+d x^{3^{\prime}} \wedge d x^{1^{\prime}} \wedge d x^{0^{\prime}} e_{2^{\prime}} \\
& +d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{0^{\prime}} e_{3^{\prime}}+d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{3^{\prime}} e_{0^{\prime}}
\end{aligned}
$$

From (1.2),(1.8) and (1.10) we have:

$$
\begin{gather*}
x^{0^{\prime}}=\Gamma x^{0}-\Gamma v x^{1}, \quad x^{1^{\prime}}=-\Gamma v x^{0}+\Gamma x^{1}, x^{2^{\prime}}=x^{2}, x^{3^{\prime}}=x^{3} \tag{1.14}\\
e_{0^{\prime}}=\Gamma e_{0}+\Gamma v e_{1}, \quad e_{1^{\prime}}=\Gamma v e_{0}+\Gamma e_{1}
\end{gather*}
$$

and
(1.15) $\quad e_{2^{\prime}}=\wedge_{2^{\prime}}^{\alpha} e_{\alpha}=\wedge_{2^{\prime}}^{2}, e_{2}=e_{2}$, since $\quad \wedge_{2^{\prime}}^{\alpha}=0, \quad \alpha=0,1,3$ and $\wedge_{2^{\prime}}^{2}=1$

Similarly it is easy to see that $e_{3^{\prime}}=e_{3}$. From (1.12), (1.14) and (1.15) we have:

$$
\begin{align*}
& d x^{3^{\prime}} \wedge d x^{1^{\prime}} \wedge d x^{0^{\prime}} e_{2^{\prime}}=d x^{3} \wedge d x^{1} \wedge d x^{0} e_{2} \quad \text { and } \tag{1.16}\\
& d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{0^{\prime}} e_{3^{\prime}}=d x^{1} \wedge d x^{2} \wedge d x^{0} e_{3}
\end{align*}
$$

Now:
a)

$$
\begin{aligned}
d x^{2} \wedge d x^{3^{\prime}} \wedge d x^{0^{\prime}} e_{1^{\prime}}= & d x^{2} \wedge d x^{3} \wedge\left(\Gamma d x^{0}-\Gamma v d x^{1}\right)\left(\Gamma v e_{0}+\Gamma e_{1}\right) \\
= & \Gamma^{2} v d x^{2} \wedge d x^{3} \wedge d x^{0} e_{0}-\Gamma^{2} v^{2} d x^{2} \wedge d x^{3} \wedge d x^{1} e_{0} \\
& +\Gamma^{2} d x^{2} \wedge d x^{3} \wedge d x^{0} e_{1}-\Gamma^{2} v d x^{2} \wedge d x^{3} \wedge d x^{1} e_{1}
\end{aligned}
$$

and
b)

$$
\begin{aligned}
d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{3^{\prime}} e_{0^{\prime}}= & \left(-\Gamma v d x^{0}+\Gamma d x^{1}\right) \wedge d x^{2} \wedge d x^{3}\left(\Gamma e_{0}+\Gamma v e_{1}\right) \\
= & -\Gamma^{2} v d x^{0} \wedge d x^{2} \wedge d x^{3} e_{0}-\Gamma^{2} v^{2} d x^{0} \wedge d x^{2} \wedge d x^{3} e_{1} \\
& +\Gamma^{2} d x^{1} \wedge d x^{2} \wedge d x^{3} e_{0}+\Gamma^{2} v d x^{1} \wedge d x^{2} \wedge d x^{3} e_{1} \\
= & -\Gamma^{2} v d x^{2} \wedge d x^{3} \wedge d x^{0} e_{0}-\Gamma^{2} v^{2} d x^{2} \wedge d x^{3} \wedge d x^{0} e_{1} \\
& +\Gamma^{2} d x^{2} \wedge d x^{3} \wedge d x^{1} e_{0}+\Gamma^{2} v d x^{2} \wedge d x^{3} \wedge d x^{1} e_{1}
\end{aligned}
$$

Adding the above expressions in a) and b) and observing that $\Gamma^{2}\left(1-v^{2}\right)=1$ we get:

$$
\begin{equation*}
d x^{2^{\prime}} \wedge d x^{3^{\prime}} \wedge d x^{0^{\prime}} e_{1^{\prime}}+d x^{1^{\prime}} \wedge d x^{2^{\prime}} \wedge d x^{3^{\prime}} e_{0^{\prime}}=d x^{2} \wedge d x^{3} \wedge d x^{0} e_{1}+d x^{1} \wedge d x^{2} \wedge d x^{3} e_{0} \tag{1.17}
\end{equation*}
$$

From (1.16) and (1.17) we get $* d X^{\prime}=* d X$. Thus $* d X$ is invariant under LT.

II. Differential operators in Minkowski space

Before we derive expressions for the differential operators, we give a few steps necessary for that purpose. From (1.13) we have

$$
\begin{equation*}
d X \cdot \wedge * d X=d x^{\alpha} e_{\alpha} \cdot \wedge * d x^{\beta} e_{\beta}=d x^{\alpha} \wedge * d x^{\beta}<e_{\beta}, e_{\beta}>=d x^{\alpha} \wedge * d x^{\beta} \eta_{\alpha \beta} \tag{2.1}
\end{equation*}
$$

Since

$$
\eta_{00} d x^{0} \wedge * d x^{0}=-d x^{0} \wedge d x^{1} \wedge d x^{2} \wedge d x^{3}=d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{0}=d V
$$

or

$$
d x^{0} \wedge * d x^{0}=\eta^{00} d V
$$

and

$$
\eta_{11} d x^{1} \wedge * d x^{1}=d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d x^{0}=\eta^{11} d V \text { etc }
$$

We have

$$
\begin{equation*}
d x^{\alpha} \wedge * d x^{\beta}=\eta^{\alpha \beta} d V \tag{2.2}
\end{equation*}
$$

We have shown that both $d V$ and $* d X$ are invariant with respect to LT. We use these in the study of differential operators.
Lemma 2.1 Let f be a differentiable real valued function and F, a differentiable vectorfield on (M, η)
Then
a) $d f \wedge * d X=\eta^{\alpha \beta} \frac{\partial f}{\partial x^{\alpha}} e_{\beta} d V=\left(-\frac{\partial f}{\partial x^{0}} e_{0}+\frac{\partial f}{\partial x^{1}} e_{1}+\frac{\partial f}{\partial x^{2}} e_{2}+\frac{\partial f}{\partial x^{3}} e_{3}\right) d V=($ gradf $) d V$
b) $d F \cdot \wedge * d X=\frac{\partial F^{\mu}}{\partial x^{\mu}} d V=\left(\frac{\partial F^{0}}{\partial x^{0}}+\frac{\partial F^{1}}{\partial x^{1}}+\frac{\partial F^{2}}{\partial x^{2}}+\frac{\partial F^{3}}{\partial x^{3}}\right) d V=(\operatorname{div} F) d V$
c) $d($ gradf $) \cdot \wedge * d X=\eta^{\alpha \gamma} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}} d V=\left(-\frac{\partial^{2} f}{\partial x^{0^{2}}}+\frac{\partial^{2} f}{\partial x^{1^{2}}}+\frac{\partial^{2} f}{\partial x^{2^{2}}}+\frac{\partial^{2} f}{\partial x^{3^{2}}}\right) d V=\square f d V$
d) $\operatorname{curl} F=\frac{\partial F^{\alpha}}{\partial x^{\beta}} \eta^{\beta \gamma} \quad \mathrm{e}_{\gamma} \times e_{\alpha}=\left(\operatorname{gradF} F^{0}+\frac{\partial \bar{F}}{\partial x^{0}}\right) \times e_{0}+(\operatorname{curl} \bar{F})_{3}$
where

$$
F=F^{0} e_{0}+\sum_{i=1}^{3} F^{i} e_{i}=F^{0} e_{0}+\bar{F}
$$

$\square f$ is known as d'Alembertian of $f[5]$ and \cdot indicates dot product between vectors and \times indicates cross product.

Proof: a)

$$
\begin{array}{rlr}
d f \wedge * d X & =\frac{\partial f}{\partial x^{\alpha}} d x^{\alpha} \wedge * d x^{\beta} e_{\beta} \\
& =\eta^{\alpha \beta} \frac{\partial f}{\partial x^{\alpha}} e_{\beta} d V \quad \quad \text { by making use of }(2.2) \\
& =(\text { gradf }) d V &
\end{array}
$$

If we use primed coordinate system, we obtain

$$
d f \wedge * d X^{\prime}=\eta^{\alpha^{\prime} \beta^{\prime}} \frac{\partial f}{\partial x^{\alpha^{\prime}}} e_{\beta^{\prime}} d V^{\prime}=(\operatorname{gradf})^{\prime} d V^{\prime}
$$

Using the invariance of $d V$ and $* d X$ we get

$$
d f \wedge * d X^{\prime}=(\operatorname{gradf})^{\prime} d V^{\prime}=d f \wedge * d X=(\operatorname{gradf}) d V
$$

Since $d V=d V^{\prime}$ we have $\operatorname{gradf}=(\operatorname{gradf})^{\prime}$
b) Let $F=F^{\alpha} e_{\alpha}$ be a differentiable vector field in (M, η). Then $d F=d F^{\alpha} e_{\alpha}$ and

$$
\begin{aligned}
d F \wedge \cdot * d X & =\frac{\partial F^{\mu}}{\partial x^{\beta}} d x^{\beta} \wedge * d x^{\alpha}\left\langle e_{\mu}, e_{\alpha}\right\rangle \\
& \left.=\frac{\partial F^{\mu}}{\partial x^{\beta}} \eta^{\beta \alpha} \eta_{\mu \alpha} d V, \quad \text { since } \quad<e_{\mu}, e_{\alpha}\right\rangle=\eta_{\mu \alpha} \\
& =\frac{\partial F^{\mu}}{\partial x^{\mu}} d V \quad \text { since } \quad \eta^{\beta \alpha} \eta_{\mu \alpha}=\delta_{\mu}^{\beta} \\
& =(\operatorname{divF}) d V
\end{aligned}
$$

where • indicates dot product between two vectors. Following the procedure used in (a) above, it is easy to show that $\operatorname{div} F$ does not depend on any particular frame.
Further we have
c) $\quad d(\operatorname{gradf}) \cdot \wedge * d X=\eta^{\alpha \beta} d\left(\frac{\partial f}{\partial x^{\alpha}}\right) e_{\beta} \cdot \wedge * d x^{\mu} e_{\mu}$

$$
\begin{aligned}
& =\eta^{\alpha \beta} \eta_{\beta \mu} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}} d x^{\gamma} \wedge * d x^{\mu} \\
& =\eta^{\gamma \mu} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}} \delta_{\mu}^{\alpha} d V, \quad \text { since } \quad \eta^{\alpha \beta} \eta_{\beta \mu}=\delta_{\mu}^{\alpha} \\
= & \eta^{\alpha \gamma} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\gamma}} d V \\
= & \square f d V
\end{aligned}
$$

Since c) is a special case of b), it is clear that $\square f$ also does not depend on any particular frame.
To prove d) some details are given below:
Definition 2.1 Let F be a differentiable vectorfield on (M, η). curl F is given by

$$
\begin{equation*}
(c u r l F) d V=-d F \wedge \times * d X \tag{2.4}
\end{equation*}
$$

where the cross indicates the vector product between vectors.

Lemma: 2.2

We have

$$
\begin{equation*}
\operatorname{curl} F=\frac{\partial F^{\alpha}}{\partial x} \eta^{\beta \gamma} \quad \mathrm{e}_{\gamma} \times e_{\alpha} \tag{2.5}
\end{equation*}
$$

Proof

$$
\begin{aligned}
(\text { curl }) d V & =-d F \wedge \times * d X \\
& =-\frac{\partial F^{\alpha}}{\partial x^{\beta}} d x^{\beta} \mathrm{e}_{\alpha} \wedge \times * d x^{\gamma} \quad e_{\gamma} \\
& =\frac{\partial F^{\alpha}}{\partial x^{\beta}} \eta^{\beta \gamma} \quad \mathrm{e}_{\gamma} \times e_{\alpha} d V
\end{aligned}
$$

from which the result follows.
Invariance of curlF :
If we use primed coordinate system, then since

$$
\begin{aligned}
F^{\alpha^{\prime}} & =F^{\alpha} \wedge_{\alpha}^{\alpha^{\prime}}, \quad \eta^{\beta^{\prime} \gamma^{\prime}}=\eta^{\beta \gamma} \wedge_{\beta}^{\beta^{\prime}} \wedge_{\gamma}^{\gamma^{\prime}} \\
\frac{\partial F^{\alpha^{\prime}}}{\partial x^{\beta^{\prime}}} & =\frac{\partial F^{\alpha}}{\partial x^{\mu}} \wedge_{\alpha}^{\alpha^{\prime}} \wedge_{\beta^{\prime}}^{\mu}, \quad e_{\gamma^{\prime}} \times e_{\alpha^{\prime}}=\wedge_{\gamma^{\prime}}^{\gamma} \wedge_{\alpha^{\prime}}^{\alpha} e_{\gamma} \times e_{\alpha}
\end{aligned}
$$

Using (2.5) we get

$$
\begin{aligned}
(\text { curl } F)^{\prime} d V^{\prime} & =\eta^{\beta^{\prime} \gamma^{\prime}} \frac{\partial F^{\alpha^{\prime}}}{\partial x^{\beta^{\prime}}} e_{\gamma^{\prime}} \times e_{\alpha^{\prime}} d V^{\prime} \\
& =\eta^{\beta \gamma} \wedge_{\beta}^{\beta^{\prime}} \wedge_{\gamma}^{\gamma^{\prime}} \frac{\partial F^{\alpha}}{\partial x^{\mu}} \wedge_{\alpha}^{\alpha^{\prime}} \wedge_{\beta^{\prime}}^{\mu} e_{\gamma^{\prime}} \times e_{\alpha^{\prime}} d V^{\prime} \\
& =\eta^{\beta \gamma} \delta_{\beta}^{\mu} \frac{\partial F^{\alpha}}{\partial x^{\mu}} e_{\gamma} \times e_{\alpha} d V, \text { since } d V^{\prime}=d V \text { and } \wedge_{\alpha}^{\alpha^{\prime}} e_{\alpha^{\prime}}=e_{\alpha}, \wedge_{\gamma}^{\gamma^{\prime}} e_{\gamma^{\prime}}=e_{\gamma}, \text { using (1.8) } \\
& =\eta^{\beta \gamma} \frac{\partial F^{\alpha}}{\partial x^{\beta}} e_{\gamma} \times e_{\alpha} d V \\
& =(\operatorname{curlF}) d V
\end{aligned}
$$

or

$$
(\operatorname{curlF})^{\prime}=\operatorname{curlF}
$$

This establishes the invariance, that is the expression for curlF does not depend on a particular Lorentz frame.
Corollary 2.3 We have

$$
\operatorname{curl}(\operatorname{gradf})=0
$$

for every differentiable real valued function f defined on (M, η).

Proof

$$
\begin{aligned}
\operatorname{curl}(\operatorname{gradf}) & =\frac{\partial}{\partial x^{\beta}}\left(\eta^{\alpha \delta} \frac{\partial f}{\partial x^{\delta}}\right) \eta^{\beta \gamma} \mathrm{e}_{\gamma} \times e_{\alpha} \\
& =\eta^{\alpha \delta} \eta^{\beta \gamma} \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\delta}} e_{\gamma} \times e_{\alpha}
\end{aligned}
$$

Since

$$
\frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\delta}}=\frac{\partial^{2} f}{\partial x^{\delta} \partial x^{\beta}}
$$

we have

$$
\operatorname{curl}(\operatorname{gradf})=\frac{1}{2}\left(\eta^{\alpha \delta} \eta^{\beta \gamma}+\eta^{\alpha \beta} \eta^{\delta \gamma}\right) \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\delta}} \mathrm{e}_{\gamma} \times e_{\alpha}=0
$$

Corollary 2.4

Let $\bar{F}=\sum_{j=1}^{3} F^{j} e_{j}$ be the space component of a vectorfield F on a (M, η).
Then

$$
\begin{equation*}
\operatorname{curl} F=\left(\operatorname{gradF}^{0}+\frac{\partial \bar{F}}{\partial x^{0}}\right) \times e_{0}+(\operatorname{curl} \overline{\bar{F}})_{3} \tag{2.6}
\end{equation*}
$$

where $(\operatorname{curl} \bar{F})_{3}$ denotes the curl of Euclidean vectorfield \bar{F} in E^{3}.

Proof

$$
\text { Let } \begin{aligned}
F & =F^{0} e_{0}+F^{j} e_{j}=F^{0} e_{0}+\bar{F} \\
\text { curl } F & =\frac{\partial F^{0}}{\partial x^{\beta}} \eta^{\beta \gamma} \quad \mathrm{e}_{\gamma} \times e_{0}+\frac{\partial F^{j}}{\partial x^{\beta}} \eta^{\beta \gamma} \quad \mathrm{e}_{\gamma} \times e_{j} \quad \quad \mathrm{j}=1,2,3 . \\
& =\left(\operatorname{gradF} F^{0}\right) \times e_{0}+\frac{\partial F^{j}}{\partial x^{0}} e_{j} \times e_{0}+\frac{\partial F^{j}}{\partial x^{k}} \eta^{k \gamma} \quad \mathrm{e}_{\gamma} \times e_{j} \\
& =\left(\operatorname{grad} F^{0}+\frac{\partial \bar{F}}{\partial x^{0}}\right) \times e_{0}+\frac{\partial F^{j}}{\partial x^{k}} \eta^{k l} e_{l} \times e_{j} \quad \text { since } \eta^{k 0}=0, \quad \quad k=1,2,3 \\
& =\left(\operatorname{gradF} F^{0}+\frac{\partial \bar{F}}{\partial x^{0}}\right) \times e_{0}+(\operatorname{curl} \bar{F})_{3}
\end{aligned}
$$

Note $2.1(\operatorname{curl} \bar{F})_{3}=\eta^{k l} \frac{\partial F^{j}}{\partial x^{k}} e_{l} \times e_{j}$

$$
\begin{aligned}
& =\eta^{11} \frac{\partial F^{j}}{\partial x^{1}} e_{1} \times e_{j}+\eta^{22} \frac{\partial F^{j}}{\partial x^{2}} e_{2} \times e_{j}+\eta^{33} \frac{\partial F^{j}}{\partial x^{3}} e_{3} \times e_{j} \\
& =\frac{\partial F^{2}}{\partial x^{1}} e_{1} \times e_{2}+\frac{\partial F^{3}}{\partial x^{1}} e_{1} \times e_{3}+\frac{\partial F^{1}}{\partial x^{2}} e_{2} \times e_{1}+\frac{\partial F^{3}}{\partial x^{2}} e_{2} \times e_{3}+\frac{\partial F^{1}}{\partial x^{3}} e_{3} \times e_{1}+\frac{\partial F^{2}}{\partial x^{3}} e_{3} \times e_{2} \\
& =\left(\frac{\partial F^{2}}{\partial x^{1}}-\frac{\partial F^{1}}{\partial x^{2}}\right) e_{1} \times e_{2}+\left(\frac{\partial F^{3}}{\partial x^{2}}-\frac{\partial F^{2}}{\partial x^{3}}\right) e_{2} \times e_{3}+\left(\frac{\partial F^{1}}{\partial x^{3}}-\frac{\partial F^{3}}{\partial x^{1}}\right) e_{3} \times e_{1}
\end{aligned}
$$

This is the usual expression for $\operatorname{curl} \bar{F}$ in E^{3}, and

$$
\begin{equation*}
\left(\operatorname{gradF} F^{0}+\frac{\partial \bar{F}}{\partial x^{0}}\right) \times e_{0}=\left(\sum_{i=1}^{3} \frac{\partial F^{0}}{\partial x^{i}} e_{i}+\frac{\partial F^{i}}{\partial x^{0}} e_{i}\right) \times e_{0} \tag{2.7}
\end{equation*}
$$

Remark 2.1.

Since e_{0} is in the direction of time the pattern $e_{1} \times e_{2}=e_{3}$ etc does not apply to the vector product of e_{i} with e_{0}. This, perhaps, is the reason why the coefficient of $e_{i} \wedge e_{0}$ is not skew-symmetric.

Expressions for gradf, divF and CurlF in terms of spherical polar coordinates.

a) \quad gradf $=-\frac{\partial f}{\partial x^{0}} e_{0}+\frac{\partial f}{\partial r} e_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} e_{\theta}+\frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} e_{\phi}$
b) $\operatorname{div} F=\frac{\partial F^{0}}{\partial x^{0}}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} F^{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta F^{\theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial F^{\phi}}{\partial \phi}$
c) $\quad \square f=$ d'Alembertian of f

$$
\begin{equation*}
=-\frac{\partial^{2} f}{\partial x^{0^{2}}}+\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial f}{\partial \theta}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}} \tag{2.8}
\end{equation*}
$$

d) \quad curl $F=\left[\left(g r a d F^{0}\right)+\frac{\partial \bar{F}}{\partial x^{0}}\right] \times e_{0}+\left[\frac{1}{r} \frac{\partial}{\partial r}\left(r F^{\theta}\right)-\frac{1}{r} \frac{\partial F^{r}}{\partial \theta}\right] e_{r} \times e_{\theta}$

$$
+\frac{1}{r \sin \theta}\left(\frac{\partial}{\partial \theta}\left(F^{\phi} \sin \theta\right)-\frac{\partial F^{\theta}}{\partial \phi}\right) e_{\theta} \times e_{\phi}+\left(\frac{1}{r \sin \theta} \frac{\partial F^{r}}{\partial \phi}-\frac{1}{r} \frac{\partial}{\partial r}\left(r F^{\phi}\right)\right) e_{\phi} \times e_{r}
$$

where

$$
\begin{aligned}
& X=x^{0} e_{0}+r \sin \theta \cos \phi e_{1}+r \sin \theta \sin \phi e_{2}+r \cos \theta e_{3} \text { and } \\
& F=F^{0} e_{0}+F^{r} e_{r}+F^{\theta} e_{\theta}+F^{\phi} e_{\phi}, e_{r}=\sin \theta \cos \phi e_{1}+\sin \theta \sin \phi e_{2}+\cos \theta e_{3}, \\
& e_{\theta}=\cos \theta \cos \phi e_{1}+\cos \theta \sin \phi e_{2}-\sin \theta e_{3} \text { and } e_{\phi}=-\sin \phi e_{1}+\cos \phi e_{2}
\end{aligned}
$$

The expression for $\square f$ given here may be compared with the formula for d'Alembertian given in
[1] on p.76. For details of derivation of these formulas see [2].
The motivation for using this new method of deriving expressions for differential operators was from such a derivation available in 3-dimensional Euclidean space. This is briefly indicated in the appendix.

Appendix: Differential operators in 3-dimensional space

Let $X=x^{i} e_{i}$ be the position vector of a point in E^{3}. Then $* d X=* d x^{i} e_{i}$ where $*$ is Hodge's operator.

$$
\begin{gathered}
* d x^{1}=d x^{2} \wedge d x^{3}, * d x^{2}=d x^{3} \wedge d x^{1}, * d x^{3}=d x^{1} \wedge d x^{2} \\
d V=d x^{1} \wedge * d x^{1} \ldots \text { etc., where } d V \text { is the volume element. }
\end{gathered}
$$

Let f be a real valued function on E^{3} and $F=\left(F^{1}, F^{2}, F^{3}\right)=F^{i} e_{i}$ be a vector valued function. Then

$$
\begin{aligned}
d f \wedge * d X & =\frac{\partial f}{\partial x^{i}} d x^{i} \wedge * d x^{j} e_{j}, d x^{i} \wedge * d x^{j}=\delta^{i j} d V \\
& =\left(\frac{\partial f}{\partial x^{i}} e_{1}+\frac{\partial f}{\partial x^{2}} e_{2}+\frac{\partial f}{\partial x^{3}} e_{3}\right) d V=(\text { gradf }) d V \\
d F \cdot \wedge * d X & =\frac{\partial F^{i}}{\partial x^{k}} d x^{k} \wedge * d x^{l} e_{i} \cdot e_{l} \\
& =\delta_{i l} \frac{\partial F^{i}}{\partial x^{k}} d x^{k} \wedge * d x^{l} \\
& =\delta_{i l} \delta^{k l} \frac{\partial F^{i}}{\partial x^{k}} d V=\frac{\partial F^{i}}{\partial x^{i}} \cdot d V=(d i v F) d V \\
d F \wedge \times * d X & =\frac{\partial F^{i}}{\partial x^{j}} d x^{j} \wedge * d x^{k} e_{i} \times e_{k} \\
& =\delta^{j k} d V \frac{\partial F^{i}}{\partial x^{j}} e_{i} \times e_{k}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial F^{1}}{\partial x^{2}} \delta^{22} e_{1} \times e_{2} d V+\frac{\partial F^{2}}{\partial x^{1}} \delta^{11} e_{2} \times e_{1} d V+\ldots \\
& =\left(\frac{\partial F^{1}}{\partial x^{2}}-\frac{\partial F^{2}}{\partial x^{1}}\right) e_{1} \times e_{2} d V+\ldots \\
& =- \text { curl } F d V
\end{aligned}
$$

In these, $* d X$ and $d V$ depend on a coordinate system and are not invariant under a transformation of coordinate axes. This does not apply to $d f$ and $d F$. Under Lorentz transformation it has been possible to show that both $d V$ and $* d X$ are invariant. This has helped us to define differential operators in an invariant way.

References

[1]. Adler R, M.Brazin and Schiffer, Introduction to General relativity, Mc-Graw Hill, New York p. 76 (1965).
[2]. Krishna S Amur, Christopher R and Keshav Naik, Topics in Differential Geometry Including an application to Special Relativity. Lambert Academic Publishing, Germany pp 1-34 (2012).
[3]. Flanders. H, Differential forms with applications to Physical Sciences. Academic press New York. London. p. 15 (1965).
[4]. Charles W. Misner, Kip S., Thorne and John Archibald Wheeler, Gravitation, W.H Freeman and Company San Francisco, pp 6669, (1971).
[5]. N.M.J. Woodhouse, Special Relativity, Springer pp.96, 139 (2003).

