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Abstract: For the past few decades, scientists are more desperate than ever to unify gravity and 

electromagnetism. It is the last missing piece in our picture of grand unification however, in this paper, I want 

to express my view about a mathematical possibility that why we may never be able to unify gravity and 

electromagnetism. As we will see, gravity and electromagnetism may actually be a same phenomenon, or rather, 

the consequence of a same phenomenon. They may unify, but in a higher dimension in which case, we may never 

be able to unify them while working in a 4 dimensional space time frame of reference. 
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I. Introduction 
There have been several attempts at creating a unified field theory beginning with the Riemannian 

geometry[1][2][3] of general relativity[4][5][6], followed by attempts of Einstein to incorporate electromagnetic 

fields into a more general geometry, since ordinary Riemannian geometry seemed incapable of expressing the 

properties of the electromagnetic field. However, Einstein was not alone in his attempts to unify 

electromagnetism and gravity; a large number of mathematicians and physicists, including Hermann Weyl 

[7][8], Arthur Eddington [9][10], Theodor Kaluza [11][12], and R. Bach also attempted to develop approaches 

that could unify these interactions. These scientists pursued several avenues of generalization, including 

extending the foundations of geometry and adding an extra spatial dimension. When the equivalent of Maxwell's 

equations for electromagnetism is formulated within the framework of Einstein's theory of general relativity, the 

electromagnetic field energy contributes to the stress tensor and thus to the curvature of space-time, which is the 

general-relativistic representation of the gravitational field; or putting it another way, certain configurations of 

curved space-time incorporate effects of an electromagnetic field. This suggests that a purely geometric theory 

ought to treat these two fields as different aspects of the same basic phenomenon. This is important as Banerjee-

Dzubur Dimensional Impairing Theorem extends this notion and modifies it. Banerjee-Dzubur Dimensional 

Impairing Theorem states that if there is an „n‟ dimensional force field Fn[13][14][15], imparting a displacement 

curve φn to the test particle, and if we try to study its effects from a frame of referencemade up of „m‟ 

dimensions, (where m is any integer number smaller than „n‟, i.e. m ϵ [0, n-1]) then, the result obtained will be 

consistent with an „m‟ dimensional force field Fm, that imparts a displacement curve φm to the test particle. 

There is no experiment that we can perform, to indicate the fact that it is a higher dimensional phenomenon. 

Banerjee-Dzubur Dimensional Impairing Theorem also predicts that two or more same dimensional force fields 

of different nature may unify at higher dimensions. 

 

II. Mathematical Operators Used 

1. Let Δx
n
 represent 

𝑑

𝑑𝑡
(

𝑑

𝑑𝑡
(

𝑑

𝑑𝑡
(

𝑑

𝑑𝑡
(… … . .

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
) n times i.e. nth differentiation of x with respect to time. 

2. 𝜕x
n
 represent 

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
(

𝜕

𝜕𝑥
(… . .

𝜕

𝜕𝑥
(

𝜕φ

𝜕𝑥
) n times i.e. nth partial differentiation of φ with respect to x. 

3. 𝜕x1, x2, x3, …….xn
n
 represent 

𝜕

𝜕𝑥1
(

𝜕

𝜕𝑥2
(

𝜕

𝜕𝑥3
(

𝜕

𝜕𝑥4
(

𝜕

𝜕𝑥5
(

𝜕

𝜕𝑥6
(… . . (

𝜕φ

𝜕𝑥𝑛
) i.e. nth partial nth partial differentiation of φ 

with respect to x1, x2, x3, x4,….. xn. 

Note: Neither Δ, nor 𝜕, follow the multiplicative equality that is, 

(Δx
n
) * (Δx

n
) ≠ Δx

2n
 but is = (Δx

n
)

2
 which implies, Δx

mn
 ≠ (Δx

n
)

 m
 

Similarly, (𝜕x
n
) * (𝜕x

n
) ≠ 𝜕x

2n
 but is = (𝜕x

n
)

2
 which implies, 𝜕x

mn
 ≠ (𝜕x

n
)

 m 

 

1: Analysis Of Effects Caused By Uni And Multi - Dimensional Forces. 

This section deals with the first part of “Banerjee-Dzubur Dimensional Impairing Theorem” – analysis 

of how the effect of an „n‟ dimensional force is perceived, when measuring from aframe of reference which is 

capable of supporting „n‟ or more dimensions. We will solve for both cases, (a) when the force is constant and 

(b) a varying force [16], which will give the generalized equation for a force field of „i‟ dimensions where, i = 

number of dimensions of the force which will be under consideration.  
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Note: During analysis of the forces and its effects, it is assumed that no other forces except for the one which is 

under study, is acting on the test particle. 

 

1a:Analysis Of One-Dimensional Force And Its Effect. 

 Let there be aone-dimensional force, represented by the vector 𝐹 1 that imparts a displacement curve 

(the curve traced out by the body during its motion under the influence of force 𝐹 1) φ1to the test particle. Let the 

observed effect be  𝐸  1.. The subscripts indicate the number of dimensions of the force, under whose analysis, the 

respective vector is introduced. Example: The effect vector𝐸  1 indicates that it was introduced under the analysis 

of one dimensional forces and hence, must be the effect vector of a one-dimensional force. 

 

1a.1. For A Constant One-Dimensional Force 

When the force is constant and varies with respect to just distance along a single dimension, then we can 

represent the force as, 

𝐹 1 = F (x), φ1= φ(x) where x represents the dimension along which the force varies. 

Note: how the number of dimensions the test particle is capable of undergoing displacement in, due to the force, 

is equal to the number of dimensions of the force that is acting on it. 

Let this force act on the test particle such that it undergoes displacement according to a function φ1 = φ(x). 

Therefore, effect 𝐸  1 = acceleration of the test particle = 
d

dt
(

d(φ1)

dt
)  

Here, φ1 = φ(x) because, the force is constant with respect to time. Thus the displacement of the test particle, at a 

given distance from the reference frame‟s origin, will also be constant. It is eminent in the graph below. 

 

 
Figure 1.a.1 1-dimensional steady force field vs displacement curve. 

 

Now, from Chain rule for multivariable functions, [17][18] 

dφ1 = 
𝜕φ1

𝜕𝑥
(dx)  

or, 
𝑑φ1

𝑑𝑡
 = 

𝜕φ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) 

Let us define a velocity function Ψ1 = Ψ (x, t) = 
𝑑φ1

𝑑𝑡
 

Therefore 𝐸  1 = 
𝑑Ψ1

𝑑𝑡
 

Now, dΨ1 = 
𝜕Ψ1

𝜕𝑥
(dx) + 

𝜕Ψ1

𝜕𝑡
(dt) as Ψ is a function of both x and t. 

𝑑Ψ1

𝑑𝑡
 = 

𝜕Ψ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕Ψ1

𝜕𝑡
 

Where, 
𝜕Ψ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) = {

𝜕

𝜕𝑥
(

𝜕φ1

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
= 𝜕x

2
(Δx

1
)

2
 

And 
𝜕Ψ1

𝜕𝑡
 = 

𝜕φ1

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)} =𝜕x

1
(Δx

2
) as here, φ1 is constant with respect to time t. 

or,𝐸  1 =
d

dt
{

d(Ψ1)

dt
} = {

𝜕

𝜕𝑥
(

𝜕φ1

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
 + 

𝜕φ1

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)} = 𝜕x

2
(Δx

1
)

2
 + 𝜕x

1
(Δx

2
). 

Therefore, for a constant one-dimensional force, the effect as observed is  

𝐸  1 = 𝜕x
2
(Δx

1
)

2
 + 𝜕x

1
(Δx

2
)……….Eq(1) 

 

1a.2. For A Varying One-Dimensional Force. 

When the force varies with respect to time along with displacement along a single dimension, then we can 

represent the force as, 
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𝐹 1 = F (x, t), φ1 = φ(x, t).  where t is the time dimension. 

Note: how again the number of dimensions the test particle is capable of undergoing displacement in due to the 

force, is equal to the number of dimensions of the force that is acting on it. 

Displacement curve of the test particle is governed by the force acting on it. Since the force in this case changes 

with time, thus the displacement function of the test particle also changes with time. It can be seen in the graph 

below. 

 

 
Figure 1.a.2 1-dimensional varying force field vs displacement curve 

 

Again, from Chain rule for multivariable functions,  

dφ1 = 
𝜕φ1

𝜕𝑥
(dx) + 

𝜕φ1

𝜕𝑡
(dt) 

or, 
𝑑φ1

𝑑𝑡
 = 

𝜕φ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ1

𝜕𝑡
 

Therefore, the velocity function in this case will be,  

Ψ1 = Ψ (x, t) = 
𝑑φ1

𝑑𝑡
 = 

𝜕φ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ1

𝜕𝑡
 

Now,  

dΨ1 = 
𝜕Ψ1

𝜕𝑥
(dx) + 

𝜕Ψ1

𝜕𝑡
(dt) 

or, 
𝑑Ψ1

𝑑𝑡
 = 

𝜕Ψ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕Ψ1

𝜕𝑡
 

Here, 
𝜕Ψ1

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) = {

𝜕

𝜕𝑥
(

𝜕φ

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
 + {

𝜕

𝜕𝑥
(

𝜕φ

𝜕𝑡
)}(

𝑑𝑥

𝑑𝑡
)  = 𝜕x

2
(Δx

1
)

2
 + 𝜕x, t 

2
(Δx

1
) as here, φ1 not is constant with respect to 

time t. 

and 
𝜕Ψ1

𝜕𝑡
 ={

𝜕

𝜕𝑡
(

𝜕φ

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) +

𝜕φ1

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)} + 

𝜕

𝜕𝑡
(

𝜕φ

𝜕𝑡
) =𝜕x, t 

2
(Δx

1
) +𝜕x

1
(Δx

2
) + 𝜕t

2
 

Since 𝐸  1 = 
𝑑Ψ1

𝑑𝑡
 

Therefore, 𝐸  1 = {  
𝜕

𝜕𝑥
(

𝜕φ

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) + 

𝜕

𝜕𝑡
(

𝜕φ

𝜕𝑡
) } + 2{  

𝜕

𝜕𝑥
(

𝜕φ

𝜕𝑡
)}(

𝑑𝑥

𝑑𝑡
) } + 

𝜕φ1

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)}  

= { 𝜕x
2
(Δx

1
)

2
 + 𝜕t

2
 } + 2{ 𝜕x, t 

2
(Δx

1
) } + 𝜕x

1
(Δx

2
) 

Thus, for a varying one-dimensional force, the effect 𝐸  1 is, 

𝐸  1 = { 𝜕x
2
(Δx

1
)

2
 + 𝜕t

2
 } + 2{ 𝜕x, t 

2
(Δx

1
) } + 𝜕x

1
(Δx

2
)……….Eq(2) 

This is the generalized equation for the effect of a one-dimensional force. 

We can see that, for a constant one dimensional force, any value of  𝜕 with subscript t will become 0 as φ does 

not vary with time and thus, 𝜕t
2
 and 𝜕x, t 

2
will become 0 and we will get back Eq(1). 

 

1b: Analysis Of Two-Dimensional Force And Its Effect. 

Again, let there be a two-dimensional force, represented by the vector 𝐹 2 that imparts a displacement 

curve (the curve traced out by the body during its motion under the influence of force 𝐹 2) φ2 to the test particle. 
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Let the observed effect be  𝐸  2. . Again, like in previous case, the subscripts indicate the number of dimensions of 

the force, under whose analysis, the respective vector is introduced. 

 

1b.1. For A Constant Two-Dimensional Force 

When the force is constant and varies with respect to just distance along two dimensions, then we can represent 

the force as, 

𝐹 2 = F (x, y), φ2 = φ(x, y) where x and y represents the dimensions along which the force varies. 

Note: how the number of dimensions the test particle is capable of undergoing displacement in, due to the force, 

is equal to the number of dimensions of the force that is acting on it. 

Let this force act on the test particle such that it undergoes displacement according to a function φ2 = φ(x, y). 

Therefore, effect  𝐸  2 = acceleration of the test particle =  
d

dt
(

d(φ2)

dt
)  

Here, φ2 = φ(x, y) because, the force is constant with respect to time. Thus the displacement of the test particle 

(which happens in xy plane), at a given distance from the reference frame‟s origin, will also be constant. It is 

eminent in the graph below. 

 

 
Figure 1.b.1 2-dimensional steady force field vs displacement curve, view 1. 

 

 
Figure 1.b.1 2-dimensional steady force field vs displacement curve, view 2. 

 

Again, from Chain rule for multivariable functions,  

dφ2 = 
𝜕φ2

𝜕𝑥
(dx) + 

𝜕φ2

𝜕𝑦
(dy)  

or, 
𝑑φ2

𝑑𝑡
 = 

𝜕φ2

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ2

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) 

Therefore, the velocity function in this case will be,  

Ψ2 = Ψ (x, y, t) = 
𝑑φ2

𝑑𝑡
 = 

𝜕φ2

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ2

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) as Ψ is a function of x, y and t. 

Therefore, from solving we get, 

𝐸  2 = 
d

dt
{

d(Ψ2)

dt
} = {

𝜕

𝜕𝑥
(

𝜕φ2

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑥
(

𝜕φ2

𝜕𝑦
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑦
(

𝜕φ2

𝜕𝑦
)}(

𝑑𝑦

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑦
(

𝜕φ2

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + 

𝜕φ2

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)} + 

𝜕φ2

𝜕𝑦
{

𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑡
)} 
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Or, 𝐸  2 = 𝜕x
2
(Δx

1
)

2+𝜕x, y
2
(Δx

1
)(Δy

1
) + 𝜕y

2
(Δy

1
)

2+𝜕x, y
2
(Δx

1
)(Δy

1
) + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
) 

Or,𝐸  2 = {𝜕x
2
(Δx

1
)

2
 + 𝜕y

2
(Δy

1
)

2
} + 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
)} + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
)……….Eq(3) 

 

1b.2. For A Varying Two-Dimensional Force. 

When the force varies with respect to time along with displacement along two dimensions, then we can 

represent the force as, 

𝐹 2 = F (x, y, t), φ2 = φ(x, y, t).  where t is the time dimension. 

Note: how again the number of dimensions the test particle is capable of undergoing displacement in, due to the 

force, is equal to the number of dimensions of the force that is acting on it. 

Let this force act on the test particle such that it undergoes displacement according to a function φ2 = φ(x, y, t). 

Therefore, effect  𝐸  2 = acceleration of the test particle =  
d

dt
(

d(φ2)

dt
)  

Displacement curve of the test particle is governed by the force acting on it. Since the force in this case changes 

with time, thus the displacement function of the test particle also changes with time. It can be seen in the graph 

below. 

 

 
Figure 1.b.2 2-dimensional non-steady field vs displacement curve 

 

Again, from Chain rule for multivariable functions,  

dφ2 = 
𝜕φ2

𝜕𝑥
(dx) + 

𝜕φ2

𝜕𝑦
(dy) + 

𝜕φ2

𝜕𝑡
(dt) as φ2 varies with time too. 

𝑑φ2

𝑑𝑡
 = 

𝜕φ2

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ2

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ2

𝜕𝑡
 

Therefore, here, the velocity function will be 

Ψ2 = Ψ (x, y, t) = 
𝑑φ2

𝑑𝑡
 = 

𝜕φ2

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ2

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ2

𝜕𝑡
 

Therefore, again solving, we get, 

𝐸  2 = 
d

dt
{

d(Ψ2)

dt
} = {

𝜕

𝜕𝑥
(

𝜕φ2

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑥
(

𝜕φ2

𝜕𝑦
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑥
(

𝜕φ2

𝜕𝑡
)}(

𝑑𝑥

𝑑𝑡
) + {

𝜕

𝜕𝑦
(

𝜕φ2

𝜕𝑦
)}(

𝑑𝑦

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑦
(

𝜕φ2

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + 

{
𝜕

𝜕𝑦
(

𝜕φ2

𝜕𝑡
)}(

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑡
(

𝜕φ2

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) + 

𝜕φ2

𝜕𝑥
{

𝑑

𝑑𝑡
(

𝑑𝑥

𝑑𝑡
)} + {

𝜕

𝜕𝑡
(

𝜕φ2

𝜕𝑦
)}(

𝑑𝑦

𝑑𝑡
) + 

𝜕φ2

𝜕𝑦
{

𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑡
)} + 

𝜕

𝜕𝑡
(

𝜕φ2

𝜕𝑡
)  

= 𝜕x
2
(Δx

1
)

2+𝜕x, y
2
(Δx

1
)(Δy

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕y

2
(Δy

1
)

2+𝜕x, y
2
(Δx

1
)(Δy

1
) + 𝜕y, t

2
(Δy

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕x

1
(Δx

2
) + 𝜕y, 

t
2
(Δy

1
) + 𝜕y

1
(Δy

2
) + 𝜕t

2 

= 𝜕x
2
(Δx

1
)

2+𝜕y
2
(Δy

1
)

2
 + 𝜕t

2
 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕y, t

2
(Δy

1
)} + 𝜕x

1
(Δx

2
) +𝜕y

1
(Δy

2
) 

Thus, 

𝐸  2
= 

{𝜕x
2
(Δx

1
)

2+𝜕y
2
(Δy

1
)

2
 + 𝜕t

2
}+ 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕y, t

2
(Δy

1
)} + 𝜕x

1
(Δx

2
) +𝜕y

1
(Δy

2
)   …..Eq(4)  

This is the generalized equation for the effect of a two-dimensional force. 

We can see that, for a constant two-dimensional force, any value of  𝜕 with subscript t will become 0 as φ does 

not vary with time and thus, 𝜕t
2
, 𝜕x, t 

2
 and 𝜕y, t

2
 will become 0 and we will get back Eq (3) 

 

1.c.1. For A Constant Three-Dimensional Force 

When the force is constant and varies with respect to just distance along three dimensions, then we can represent 

the force as, 

𝐹 3 = F (x, y, z), φ3 = φ(x, y, z) where x and y represents the dimensions along which the force varies. 
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Let this force act on the test particle such that it undergoes displacement according to a function φ3 = φ(x, y, z). 

Therefore, effect  𝐸  3 = acceleration of the test particle =  
d

dt
(

d(φ3)

dt
)  

Here, φ3 = φ(x, y, z) because, the force is constant with respect to time. Thus the displacement of the test 

particle, at a given distance from the reference frame‟s origin, will also be constant. 

This cannot be shown in graph since the displacement function needs a fourth dimension to be plotted. 

Again, from Chain rule for multivariable functions,  

dφ3 = 
𝜕φ3

𝜕𝑥
(dx) + 

𝜕φ3

𝜕𝑦
(dy) + 

𝜕φ3

𝜕𝑧
(dz) 

or, 
𝑑φ3

𝑑𝑡
 = 

𝜕φ3

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ3

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ3

𝜕𝑧
(
𝑑𝑧

𝑑𝑡
) 

Therefore, the velocity function in this case will be,  

Ψ3 = Ψ (x, y, z, t) = 
𝑑φ3

𝑑𝑡
 = 

𝜕φ3

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ3

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ3

𝜕𝑧
(
𝑑𝑧

𝑑𝑡
)  as Ψ is a function of x, y, z and t. 

Therefore, we get, 

𝐸  3 = 
d

dt
{

d(Ψ3)

dt
} = {

𝜕

𝜕𝑥
(

𝜕φ3

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑥
(

𝜕φ3

𝜕𝑦
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑥
(

𝜕φ3

𝜕𝑧
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑧

𝑑𝑡
) +  {

𝜕

𝜕𝑦
(

𝜕φ3

𝜕𝑦
)}(

𝑑𝑦

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑦
(

𝜕φ3

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + 

{
𝜕

𝜕𝑦
(

𝜕φ3

𝜕𝑧
)}(

𝑑𝑧

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑧
)}(

𝑑𝑧

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑧

𝑑𝑡
) + {

𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑦
)}(

𝑑𝑧

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
) + {

𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑧
)}(

𝑑𝑧

𝑑𝑡
)

2
 +{

𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑥
)}(

𝑑𝑥

𝑑𝑡
) (

𝑑𝑧

𝑑𝑡
) 

+ {
𝜕

𝜕𝑧
(

𝜕φ3

𝜕𝑦
)}(

𝑑𝑧

𝑑𝑡
) (

𝑑𝑦

𝑑𝑡
)  

= 𝜕x
2
(Δx

1
)

2
 +𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
) + 𝜕y

2
(Δy

1
)

2
 +𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
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2
(Δz

1
)

2
 +𝜕x, 

z
2
(Δx

1
)(Δz

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
) + 𝜕z

1
(Δz

2
) 

= 𝜕x
2
(Δx

1
)

2
 + 𝜕y

2
(Δy

1
)

2
 + 𝜕z

2
(Δz

1
)

2
 + 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
)} + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
) + 

𝜕z
1
(Δz

2
) 

Or, 

𝐸  3 = {𝜕x
2
(Δx

1
)

2
 + 𝜕y

2
(Δy

1
)

2
 + 𝜕z

2
(Δz

1
)

2
} + 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
)} + 𝜕x

1
(Δx

2
) + 

𝜕y
1
(Δy

2
) + 𝜕z

1
(Δz

2
) ………..Eq(5)  

 

1.c.2 For A Varying Three-Dimensional Force 

When the force varies with respect to time along with displacement along three dimensions, then we can 

represent the force as, 

𝐹 3 = F (x, y, z, t), φ3 = φ(x, y, z, t).  where t is the time dimension. 

Note: how again the number of dimensions the test particle is capable of undergoing displacement in, due to the 

force, is equal to the number of dimensions of the force that is acting on it. 

Let this force act on the test particle such that it undergoes displacement according to a function φ3 = φ(x, y, z, 

t). Therefore, effect  𝐸  3 = acceleration of the test particle =  
d

dt
(

d(φ3)

dt
)  

Again, from Chain rule for multivariable functions,  

dφ3 = 
𝜕φ3

𝜕𝑥
(dx) + 

𝜕φ3

𝜕𝑦
(dy) + 

𝜕φ3

𝜕𝑧
(dz) + 

𝜕φ3

𝜕𝑡
(dt) 

or, 
𝑑φ3

𝑑𝑡
 = 

𝜕φ3

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ3

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ3

𝜕𝑧
(
𝑑𝑧

𝑑𝑡
) + 

𝜕φ3

𝜕𝑡
 

Therefore, the velocity function in this case will be,  

Ψ3 = Ψ (x, y, z, t) = 
𝑑φ3

𝑑𝑡
 = 

𝜕φ3

𝜕𝑥
(
𝑑𝑥

𝑑𝑡
) + 

𝜕φ3

𝜕𝑦
(
𝑑𝑦

𝑑𝑡
) + 

𝜕φ3

𝜕𝑧
(
𝑑𝑧

𝑑𝑡
) + 

𝜕φ3

𝜕𝑡
 

as Ψ is a function of x, y, z and t 

Therefore, 

𝐸  3 =𝜕x
2
(Δx

1
)

2
 +𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕y

2
(Δy

1
)

2
 +𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕y, 

t
2
(Δy

1
) + 𝜕z

2
(Δz

1
)

2
 +𝜕x, z

2
(Δx

1
)(Δz

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕z, t

2
(Δz

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕x

1
(Δx

2
) + 𝜕y, t

2
(Δy

1
) + 𝜕y

1
(Δy

2
) + 𝜕z, 

t
2
(Δz

1
) + 𝜕z

1
(Δz

2
)  + 𝜕t

2
 

Or, 𝐸  3 = {𝜕x
2
(Δx

1
)

2
 + 𝜕y

2
(Δy

1
)

2
 + 𝜕z

2
(Δz

1
)

2 
+ 𝜕t

2
}+ 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕y, z

2
(Δy

1
)(Δz

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
) + 𝜕x, 

t
2
(Δx

1
) + 𝜕y, t

2
(Δy

1
) + 𝜕z, t

2
(Δz

1
)} + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
) + 𝜕z

1
(Δz

2
) ………..Eq(6) 

This is the generalized equation for the effect of a three-dimensional force. 

We can see that, for a constant three dimensional force, any value of  𝜕 with subscript t will become 0 as φ does 

not vary with time and thus, 𝜕t
2
, 𝜕x, t 

2
, 𝜕y, t

2
 and 𝜕z, t

2
 will become 0 and we will get back Eq(5). 

Summarizing the results obtained in 1.a, 1.b and 1.c, the generalized equations for effect of different 

dimensional forces are: 
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Table 1.1 

1D  𝜕x
2
(Δx

1
)

2
 + 𝜕t

2
 + 2{ 𝜕x, t 

2
(Δx

1
)} +𝜕x

1
(Δx

2
) 

 

2D 𝜕x
2
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1
)

2+𝜕y
2
(Δy

1
)

2
 + 
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2
 

+ 2{ 𝜕x, y
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1
)(Δy

1
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2
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1
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2
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1
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1
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2
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1
(Δy

2
) 

3D 𝜕x
2
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)

2
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)
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+ 
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2
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1
)
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2
 

+ 2{ 𝜕x, y
2
(Δx

1
)(Δy

1
)  

+ 𝜕y, z
2
(Δy

1
)(Δz

1
) + 𝜕x, z

2
(Δx

1
)(Δz

1
) + 𝜕x, t

2
(Δx

1
) 

+ 𝜕y, t
2
(Δy

1
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2
(Δz

1
)} 
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1
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2
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+𝜕y
1
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2
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+ 𝜕z
1
(Δz

2
) 

For which, the respective values of forces and the displacement functions are: 

Table1.2 

1D 𝐹 1 = F (x, t) φ1 = φ(x, t) 

2D 𝐹 2 = F (x, y, t) Φ2 = φ(x, y, t) 

3D 𝐹 3 = F (x, y, z, t) Φ3 = φ(x, y, z, t) 

Note: Here the dimension of time is taken more as a case of varying force rather than a separate dimension. 

Nonetheless, the conclusions that will be drawn from the above summary will remain the same even if one 

considers time as an individual dimension. 

III. The Theorem 
2.a:The Impairing 

What happens when we try to measure a two-dimensional force from a one-dimensional frame of reference?We 

know from Table 1.2 that for a two dimensional force varying with time 𝐹 2 = F (x, y, t), the displacement curve 

is given by Φ2 = φ(x, y, t) and the effect (from Table 1.1) by 𝐸  2
= 

{𝜕x
2
(Δx

1
)

2+𝜕y
2
(Δy

1
)

2
 + 𝜕t

2
}+ 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) 

+ 𝜕x, t
2
(Δx

1
) + 𝜕y, t

2
(Δy

1
)} + 𝜕x

1
(Δx

2
) + 𝜕y

1
(Δy

2
).However, since we are measuring from a one-dimensional frame 

of reference, we can measure displacement along just one dimension (say x). Thus the displacement curve 

perceived by us, for the test particle will be Φ2
„
= φ(x, t) which will be the subset of the original displacement 

curve. When we will try to see the effect of the force, having only one dimension to work with, we won‟t be 

able to perceive any displacement or excitation due to the force in the second dimension. We can observe and 

perceive only the effects that takes place in the dimension we are measuring in. So, if we are measuring in x 

dimension then we can only measure displacements along x. Thus the differential equation for the effect 

obtained by us will contain only derivatives that are with respect to x or t (Again note how the dimension of 

time is implicitly taken into consideration so as to represent practicality). Thus the equation of the effect 

perceived by us will be:𝐸  2
„
= { 𝜕x

2
(Δx

1
)

2
 + 𝜕t

2
 } + 2{ 𝜕x, t 

2
(Δx

1
) } + 𝜕x

1
(Δx

2
).As we can see, the equation is same 

as equation(2) which is the equation for the effect a one-dimensional varying force, whose imparted 

displacement curve on the test particle is given by φ1 = φ(x, t) which, is again same as our perceived 

displacement curve Φ2
„
= φ(x, t). 

 

Therefore, the results so obtained will actually indicate a one-dimensional varying force. Also, since Φ2
„
 is a 

subset of Φ2 that is, all values of Φ2
„
 lies within the range of Φ2, therefore, the results obtained will also be 

consistent with the original phenomenon, 𝐹 2.Similarly, for a three-dimensional varying force, if we try to 

measure from a two-dimensional frame of reference then, the results we will get will be consistent and will 

indicate towards a two-dimensional varying force. Building upon the notion, we can see that to measure an „n‟ 

dimensional force, we require a frame of reference that supports at least „n‟ dimensions. Else, while measuring 

from a smaller dimensional frame of reference, we will perceive the force as an „m‟ dimensional force where m 

is equal to the number of dimensions supported by the frame of reference. Also, we cannot do any 

experiment,that can indicate towards the fact that it is actually, a higher dimensional phenomenon. Also note, at 

this point, we are capable of understanding the fact that here, time is just used as a dimension against which, the 

rates of change are measured. We can measure the rates of change against a different parameter. In that case, 

time will be treated just like any other dimensional parameter (x, y, z etc.) and their respective differential 

coefficients will switch places. 

 

2.b The Unifying Prediction 

Consider a general case of two-dimensional force: 

𝐹 2 = F (x, y, t), Φ2 = φ(x, y, t) and 𝐸  2
= 

{𝜕x
2
(Δx

1
)

2+𝜕y
2
(Δy

1
)

2
 + 𝜕t

2
}+ 2{ 𝜕x, y

2
(Δx

1
)(Δy

1
) + 𝜕x, t

2
(Δx

1
) + 𝜕y, t

2
(Δy

1
)} + 

𝜕x
1
(Δx

2
) + 𝜕y

1
(Δy

2
). Say our frame of reference supports only one dimension (excluding time). That is, either we 
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can measure along x, or along y, but not both.From the conclusions of (2.a), When measuring along x, the 

results obtained will be: 

𝐹 2
‟x

 = F (x, t), Φ2
‟x

 = φ(x, t) and 𝐸  2
„x

= { 𝜕x
2
(Δx

1
)

2
 + 𝜕t

2
 } + 2{ 𝜕x, t 

2
(Δx

1
) } + 𝜕x

1
(Δx

2
) and when measuring along 

y, the results obtained will be:𝐹 2
‟y

 = F (y, t), Φ2
‟y

 = φ(y, t) and 𝐸  2
„y

= { 𝜕y
2
(Δy

1
)

2
 + 𝜕t

2
} + 2{ 𝜕y, t 

2
(Δy

1
)} + 

𝜕y
1
(Δy

2
).As we can see, both the results are consistent with the original phenomenon i.e., Φ2

‟x
 and Φ2

‟y
 both are 

subsets of Φ2 and 𝐸  2
„x 

&𝐸  2
„y

 both are constituents of 𝐸  2 thus we will perceive both of them as two dimensional 

forces that is varying with time however, they won‟t be similar. i.e. generally, 𝐹 2
‟x

 ≠ 𝐹 2
‟y

, Φ2
‟x

 ≠ Φ2
‟y

 and 𝐸  2
„x

 ≠ 

𝐸  2
„y

. Therefore, they might be perceived as two different individual 2-dimensional forces that varies with time 

and we would not be able to perform any experiment that can hint to the fact that they are actually a 

manifestation of a single higher dimensional force, that they unify, in higher dimension.One might argue that for 

this to be a valid argument, the measurement axes x and y must be different from each other to which the answer 

will be no! the important concept here is how we can divide higher dimensional phenomenon into different 

lower dimensional phenomenon. Think the above example like this, there is a 2-dimensional phenomenon, with 

one component along x axis and one along y axis. We just have a 1-dimensional frame to measure with. So we 

try to measure the x component with our 1-d (one dimensional) frame and then, we try to measure the y 

component. We perceive them as different phenomenon. We can also take two 1-d frames and measure the x 

component with one and the y component with the other. We will still perceive them as different. The frame 

from which we are measuring is not changing, it remains the same. Measuring with two 1-d frames at a time is 

not same as measuring with one 2-d frame. The phenomena we are measuring might just be a component of a 

higher dimensional phenomena. 

 

2.c: Analogy: With Special & General relativity: 

Special [19][20][21]&General [22] relativity tells us that one cannot perform any experiment to tell 

about the absolute state of motion [23] of any particle. One can only tell its state of motion, relative to a frame 

of reference. Similarly, Banerjee-Dzubur Dimensional Impairing Theorem puts a restriction on the absoluteness 

of a force field. One cannot say with absolution, the properties of a force field acting on the test particle, and 

likewise differentiate a force field from other, all one can do is define and differentiate the force fields, with 

respect to the frame of reference of the measurement.  

 

2.d: Does It Contradicts The Unified Field Theory? 

Not necessarily. From Higgs mechanism [24][25][26] to spontaneous symmetry breaking[27][28][29], 

allproperties and mechanism are tied to the 4 dimensional spacetime. It is how we perceive,how the respective 

fields and particles interacts however, it may or may not interact in the same way, when studied from a higher 

dimensional frame of reference. According to Banerjee-Dzubur Dimensional Impairing Theorem, we will never 

know whether how we perceive these interactions, are the actual phenomenon or just a truncated part of the real 

one, until and unless, we re-perform the experiments from a frame of reference, which supports higher number 

of dimensions than the 3 spacial and 1 temporal dimensions of the spacetime we seem to know and love. 

 

2.e: Conclusion – Banerjee-Dzubur Dimensional Impairing Theorem 

Banerjee-Dzubur Dimensional Impairing Theorem thus concludes the following three statements. 

1. No force field can ever be defined completely with absoluteness. It can only be defined, with respect to 

some frame of reference 

2. An „n‟ dimensional phenomenon may not be perceived fully, depending upon the number of dimensions 

supported by the frame of reference used for the analysis of the phenomenon. It is perceived as an „m‟ 

dimensional phenomenon instead where, m is equals to n if, the frame of reference used for analysis of the 

phenomenon is capable of supporting number of dimensions greater than or equals n else, m is equals to the 

number of dimensions the frame of reference used for the analysis of the phenomenon, supports. 

3. The results so obtained in the afore mentioned case will be always consistent with the original phenomenon 

and we cannot perform any test or experiment, that will indicate to the fact that it is indeed a higher 

dimensional phenomenon. 

4. Two different kinds of, but similar dimensional phenomenon, may unify at a higher dimension. 
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