Factors Controlling Radionuclides Migration within Different Media

E.S. Abd El-Halim¹, A. Sroor¹, S.M. El-Bahi¹, Ibrahim E. El-Aassy², Enass M. El Sheikh², K.M. Musa³

¹ Department of Physics, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis, Cairo, Egypt.

². Nuclear Materials Authority, Cairo, Egypt. ^{3.} Physics Department, Faculty of Science, Tripoli University, Tripoli, Libya.

Abstract: This study aims to examine the mobility of uranium and its isotopes and daughters during the acid leaching. In the same context the study of the daughter / parent ratios in the three phases, original sample, leach liquor and residue will gave a complete picture about the behavior during weathering and alterations of these rocks. Five samples of different rock types were collected and prepared for various analyses. Wet chemical analyses were carried out for major oxides and trace elements. Natural radionuclides were measured by HPGe detector in original samples, pregnant solution and residuals. The results showed that the relation between the sum of activities of ²³⁸U in both pregnant solutions and residuals with originals have two modes. The first mode is represented by the sum of ^{238}U activities in leachate and residual is nearly equal the activity in the original sample. In the second mode the sum is higher than the original, sometimes twice or more. The well noticed thing the samples of the second mode show high content of Pb (2060-4343ppm). The behavior of ²²⁶Ra in the acidic leaching is completely different from ²³⁸U and its isotopes. Selective leaching

studies have shown that uranium isotopes are leached to the same extent but that is not observed in ^{234}U . The lowest leachability in all the samples is present in ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi.

Keywords: Radionuclides, HPGe detector, Sediment rock, Leaching.

Date of Submission: 01-12-2017

Date of acceptance: 14-12-2017

I. Introduction

The ²³⁸U, ²³⁵U, and ²³²Th are the parents of the three natural decay series, each of these series consists of many daughter products generated through successive decay of parent radionuclides. Natural uranium is a composite of the isotopes ²³⁸U (99.28%), ²³⁵U (0.72%) and ²³⁴U (0.0057%) [Powell et al., 2007]. These isotopes have the same geochemical behavior. While on a mass basis there is far more ²³⁸U than ²³⁵U in a natural sample, the activity ratio is approximately 21.7 [Porcelli and Swarzenski, 2003].

The radioactive series reaches secular equilibrium when the activity ratios of daughter/parent are equal to unity [Wally El-Dine, 2008]. Radioactive disequilibrium arises in the natural radioactive series due to recent fractionation events (continuous or instantaneous processes) which lead to the loss or gain of radionuclides that are mobile in the ambient environmental conditions. The long-lived radionuclides in the natural radioactive series, are generally used to assess the state of radioactive disequilibrium [Sam, 2000].

The physical and chemical processes used to extract uranium from ore, such as crushing and acid treatment, produce large amounts of mill tailings. In France today, approximately 50 million tons of uranium mill tailings (UMTs) are stored on the surface in specific areas. They contain 99% of the radium present in the original ore and have a much higher porosity and permeability than that of the rock from which they are derived. The average ²²⁶Ra activity value for French UMTs is between 4000 and 60,000 Bq kg⁻¹ [Ferry et al., 2002].

Acid leaching is known to be predominant process for uranium recovery from ores, usually with sulfuric acid because its relatively low cost [Umanskii and Klyushnikov, 2012].

II. Materials and methods

1. Study area

The study area (Fig.1) is located in the southwestern Sinai, Egypt. Where the samples collected from three localities; Wadi Nasab is at the intersection of longitude 33° 26' 20" and latitude 29° 2, Wadi Sad El-Banat is at the intersection of longitude 33° 24' and latitude 29° 2' 30" and Wadi Um Hamd is at the intersection of longitude 33° 25' 45" and latitude 28° 57'.

(Fig.1): Geologic map of the studied area in southwestern Sinai, Egypt [After El Aassy et al., 1986].

2. Sampling.

Five sedimentary rock samples were collected from three different locations (**Fig.1**) and different rock types; three samples from Wadi Nasab, one sample from Wadi Sad El Banat and one sample from Wadi Um Hamd. These samples were prepared for $\gamma - Ray$ spectrometric analyses by HPGe detector where the samples first dried, crushed and sieved through -60 mesh size. Weighted samples were placed in polyethylene bottles of 250 cm³ volume. The bottles were completely sealed for more than one month to allow radioactive equilibrium to be reached before measured by the gamma spectrometer. This step was necessary to ensure that radon gas is confined within the volume and the daughters still also remain in the sample. About 5 g of each sample was ground to -200 mesh for chemical analyses of major oxides and trace elements content, by the X-ray fluorescence technique (XRF).

3. Radioactivity measurements

High purity vertical germanium was coupled to a PC-computer with a special electronic card to make it equivalent to a multichannel analyzer. The system also contains the usual electronic components of preamplifier, amplifier and power supply. The detector was surrounded by a special heavy lead shield of about 10 cm thickness with inside dimension 28 cm diameter 40.5 cm height. The absolute detection efficiency of the HPGe detector was determined by using three well-known reference materials obtained from the International Atomic Energy Agency for U, Th and K activity measurements: RGU-1, RGTh-1 and RGK-1 [IAEA, 1987, Anjos et al., 2005]. The sample containers were placed on top of the detector for counting. The same geometry and size were used for both the samples and the reference materials [Pekala et al., 2010]. The primordial ²³⁸U is the most abundant isotope of U (99.27 %) and the initial member of the 238 U-decay chain with a long half-life time (4.4683 Ga). It decays to 234 Th with the emission of the α - particle. Through two consecutive β transitions, ²³⁴Th decays to ²³⁴Pa (half-lives of 24.10 days and 6.69 h, respectively) and to ²³⁴U, with the half-life time of 245,250 years, which decays to ²³⁰Th **[Pekala et al., 2010].** Uranium-238 activity was determined indirectly from the gamma rays emitted by its daughter products (²³⁴Th and ^{234m}Pa) whose activities are determined from the 63.3 (3.9%) and 1001(0.7%) keV photopeaks, respectively. The gamma-ray transitions of ²²⁸Ac (338.4 (12.3%), 911 (29%)) KeV, ²¹²Bi (727.3 KeV (7%)) and ²⁰⁸Tl (583.1 KeV (30%)) were used to evaluate the specific activity of ²³²Th [**Technical Reports Series**, **1989**]. ²²⁶Ra activity concentration was measured from 186.1 KeV (3.29 %) after the subtraction of the 185.7 KeV (54 %) of ²³⁵U. The concentrations of ²¹⁴Pb and ²¹⁴Bi were measured from (295.1(18.7%), 351.9 (35.8%)) KeV and (609.3 (45%), 1120.3(14.9%) ,1238.1(5.96%), 1764.5(16.07%)) KeV. For the actinium series gamma energies of 143.8 KeV (10.5%), 163.4 KeV (4.8 %), 185.7 KeV (54 %) and 205.3 KeV (4.7%) were taken to represent the ²³⁵U concentrations. ⁴⁰K was

determined directly from the 1460 KeV (10.7%) peak energy. ²³⁴U activity was determined directly from the gamma rays emitted from this nuclide at energies of 53.2 (0.123%) keV and 120.9 (0.034%) keV. For the measurement of the ²³⁰Th activity, the γ -ray emission at 67.7 (0.37%) keV is used [**Technical Reports Series**, **1989**].

4. Leaching Procedure

The γ –measured samples were poured from the containers and prepared for leaching experiments, using H₂SO₄ (Lab. grade) acid leaching on 150g sample weight under the conditions; solid/liquid ratio 1:3, acid concentration (110gm/L), stirring time two hours and at room temperature. Filtration was carried out to separate leachate from residual which is dried at room temperature. The residual and leachate have been weighted and packed will in polyethylene bottles of 250 ml volume and stored for more than a month for measuring by HPGe detector. The leachability of the radionuclides was calculated according to the following equation:

Leachability (%) =
$$\frac{\text{Activity concentration in leachate}}{\text{Activity concentration in original}} \times 100$$
 (1)

III. Results and Discussion

3.1. Geochemical Characterization of Samples

Major oxides for the analyzed samples are shown in **table (1)**, for samples K1 and K3, it is obviously that high level of the loss on ignition attaining about 30.5% and 34.5%, as both contains high carbonate content, while K3 is characterized also by high SO₃ (7.3%). Sample K14 is characterized by high alumina (19.1%) and iron (22.8%). Sample K15 is characterized by high SO₃ content (8.2%). Sample K21 is characterized by high Al₂O₃ (22.9%) and K₂O + Na₂O contents (6.4%).

Locality	Wadi Nasab		Wadi Sad El- Banat	Wadi Um Hamd	
Major oxides	K1 (Calcareous shale)	K3 (Calcareous shale)	K14 (Claystone)	K15 (Siltstone)	K21 (Siltstone)
SiO ₂	15.89	12.63	19.876	32.956	29.337
Al ₂ O ₃	6.824	4.304	19.145	6.787	22.911
TiO ₂	0.741	0.675	1.269	3.4	2.216
CaO	24.533	21.216	0.96	5.775	0.446
MgO	7.704	5.954	3.147	0.816	4.76
MnO	0.674	1.159	0.154	0.013	0.042
Fe ₂ O ₃	9.005	9.867	22.848	22.335	18.575
Na ₂ O	0.182	0.068	3.966	2.567	2.825
K ₂ O	1.019	0.82	1.372	0.573	3.575
P_2O_5	0.031	0.03	0.852	0.297	0.258
SO ₃	1.973	7.313	0.193	8.197	0.414
L.O.I	30.5	34.3	19	13.3	10.2

 Table (1): The concentration of the Major elements in (%) for the samples.

From **table (2)** It's clear that for Wadi Nasab location, sample K1 contain interesting values of Cu and U; namely more than 3180 and 599 ppm respectively, Sample K3 contain interesting values of Cu, Ag and U; namely more than 1735, 14.75 and 244 ppm respectively. The analyses of sample K14 have revealed the presence of interesting values of Zn, Pb, V, Sr, As, REEs and U; namely more than 26916, 4343, 3018, 1022, 183, 5187 and 101 ppm respectively. Sample K15 which is siltstone, represents Wadi Sad El-Banat showed the presence of interesting values of Cu, Zr, Sr, Pb, V, As, REEs and U; namely more than 1101, 1531, 2619, 3851.2, 4748, 324, 827 and 72 ppm respectively. Sample K21 which is siltstone type, represent Wadi Um Hamd location, the analyses have revealed the presence of interesting values of V, Cr, Pb, Ba, Zn, Zr, REEs and U; namely more than 8360, 3604, 2060, 1557, 4231, 1287, 652 and 663 ppm respectively.

Locality	Wadi Nasab		Wadi Sad Wadi Um El-Banat Hamd			
Element	K1 (Calcareous shale)	K3 (Calcareous shale)	K14 (claystone)	K15 (siltstone)	K21 (siltstone)	
Cr	91.88	107.69	244.34	574.56	3604.68	
Со	331.12	292.19	344.42	102.26	102.41	
Ni	161.13	136.60	816.4	-	219.8	
Cu	3183.76	1735.52	981.54	1101.24	750.12	
Zn	122.99	69.04	26916.56	248.93	4231.81	
Zr	165.08	156.81	629	1531.8	1287.6	
Rb	23.36	25.83	47.72	15.75	130.55	
Nb	17.03	20.59	27.82	167.76	63.12	
Ba	89.16	51.98	110.64	104.18	1557.3	
Pb	76.88	74.29	4343.04	3851.2	2060.16	
Sr	59.82	53.50	1022.45	2619.5	929.5	
Ga	7.16	8.05	14.89	16.92	26.98	
V	220.79	213.37	3018.4	4748.8	8360.8	
As	63.72	72.08	183.08	324.37	120.45	
Mo	18.68	20.1	67.24	486.18	59.91	
Ag	11.65	14.75	8.82	8.75	8.85	
Cd	6.05	6.18	21.86	1.3	8.71	
Ι	18.3	18.69	27.75	35.65	25.34	
Sc	14.71	23.54	12.98	18.58	16.22	
Y	28.86	26.53	766.29	80.36	141.82	
La	41.75	60.14	289.27	221.71	137.74	
Ce	60.4	78.87	879.44	351.42	235.93	
Nd	29.52	30.22	2338.25	131.73	100.26	
Sm	18.03	12.28	838.64	22.36	20.56	
Yb	0.74	-	62.51	1.36	-	
T1	0.67	6.16	7.91	6.24	9.2	
Bi	1.49	2.47	5.90	5.13	5.49	
Th	10.48	8.44	16.41	26.72	30.2	
U	599.52	244.03	101.89	72.36	663.98	

Table (2)	: The concer	ntration of the trac	e elements in (j	ppm) for the	selected samples	for leaching	process.

3.2. Radiometric Measuremrnts

The results of γ -detection of radionuclides in the original samples (Bq/Kg), residuals (Bq/Kg) and leachates (Bq/l) are collected in **table (3)**. The activity concentration of ²³⁸U in the original samples, residuals and pregnant solutions are higher than the typical world average value of 33 Bq/Kg [UNSCEAR, 2010].

On the other hand the behavior of ²²⁶Ra in the acidic leaching is completely different from ²³⁸U and its isotopes. It is almost 7 times lower than the leachability of ²³⁸U and ²³⁴U under the same conditions in all samples. In this case most of the dissolved ²²⁶Ra reacted with the available SO₄²⁻ to form RaSO₄ (precipitate) also due to solubility difference of the two elements [Megumi and Mamuro, 1977]. So most of the ²²⁶Ra remains in the leachate ore (residuals) [Fernandes et al., 2006]. The authors (op.cit) point to the tailings dam, waste rock piles can constitute an important source of pollutants to the environment. The RaSO₄ will precipitate on the ore and accumulated on the residual to form an environmental problem. The behavior of each radionuclide in the samples shows that the ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi activity concentrations are higher in the residual than that in the original for all samples. The activity concentration of ²²⁶Ra in the original samples, residuals and pregnant solutions are higher than the typical world average value of 32 Bq/Kg, [UNSCEAR, 2010] except the pregnant solutions K14 and K15.

For ²³²Th, all the original samples and the residuals are higher than the permissible level 45 Bq/Kg except residuals of K1 and K3. For ⁴⁰K, the original samples (K14and K21) and the residual (K14 and K21) are higher than the permissible level 412 Bq/Kg. The activity concentration of ²³²Th and ⁴⁰K for all the pregnant solutions are lower than the typical world average.

3.3. Leaching Experiments

Leaching experiments were performed under conditions that approximated natural conditions. From **table (3)**, it is clear that, there is a difference in γ -activity between the summation of activities of residual and leachates with the activity of the original sample. it can be noticed that the relations between the activities of radionuclides in original samples and the summation of them in the pregnant solutions and residuals are different from one sample to another especially in the nuclides of ²³⁸U decay series. These differences can be categorized in two groups:

- The summation of activities of the measured radionuclides before ²²⁶Ra in the ²³⁸U decay series in pregnant solution and residual is nearly around 100% (93% 106%) except ²³⁴U as in K1and K3 (shales), but from ²²⁶Ra to ²¹⁴Bi are higher than the same radionuclides in the original sample.
- 2. The summation of activities of the measured radionuclides in the pregnant solution and residual is higher than the activities of the originals as in the samples K14 (claystone), K15 and K21 (siltstones). The variations are very high in the ²²⁶Ra subseries.

From the previously mentioned results, it can be concluded that the geochemistry of each sample (**Table 2**) plays its role in these variations as in the following:

- 1. In the first case, the two samples K1 and K3 contain low concentration of Pb (76.88 and 74.29 ppm).
- 2. In the second case, the samples K14, K15 and K21 have high concentration of Pb (4343, 3851 and 2060 ppm respectively).

From these two notices, it can be concluded that Pb played its role as a good attenuated element for γ -radiations and this very clear in the measurements of original samples (K14, K15 and K21) and their leachates and residuals. The behavior of each radionuclide is noticed very well within the same sample during the leaching process.

The highest leachability (leaching efficiency %) present in sample K21 (**Table 3**), where it is (89.2%) for 234 U, while the 235 U is 54.72% and 238 U is 55.6%. but 234 U, 235 U and 238 U have similar chemical behavior, and should therefore 33.6% of 234 U was transferred physically by the α -recoil effect. The lowest leachability presents in sample K15, where it is 5.14% and 5.23% for 238 U and 235 U, respectively, also 1.72% of 234 U transferred physically.

The lowest leachability in all the samples is present in ²²⁶Ra, ²¹⁴Pb and ²¹⁴Bi. The lowest release (leachability) of ²¹⁴Pb and ²¹⁴Bi of the all samples is coinciding with the studies of **[White and Brantley, 2003]** which showed that the behavior of Pb isotopes is heavily affected by the early breakdown of U-rich minerals. The more release of ²³⁴U and the variability of ²³⁴U/²³⁸U was observed before by several authors whom

The more release of 234 U and the variability of 234 U/ 238 U was observed before by several authors whom mentioned that the release of excess 234 U may originate both from preferential release from damaged lattice sites [Bourdon et al., 2009] and direct α -recoil [Kigoshi, 1971; Depaolo et al., 2006]. However, it remains under which of the two mechanisms is most important [Andersen et al., 2009].

Table (3): Activity concentrations of radionuclides in original samples, residuals and leachates	(pregnant
solutions).	

	K1(Calcareous Shale) Wadi Nasab							
Radionuclide	Original		Solution		Leachability	Residual		Summation
								(Residual+solution)
	(Bq/Kg)		(Bq/l)		(%)	(Bq/Kg)		(%)
²³⁸ Useries								
²³⁴ Th	8067.56	±27.9	1636.48	±11.1	20.28	6924.72	±43.4	106.12
^{234m} Pa	8039.53	± 186.4	1627.02	±52.5	20.24	6935.64	± 265.2	106.51
Average	8053.55	± 107.2	1631.75	±31.8	20.26	6930.18	±154.3	106.31
²³⁴ U	6843.91	±1586	1694.5	± 152.1	24.76	5945.26	± 164.5	111.63
²³⁰ Th	7239.35	± 180	812.3	± 42.9		7478.4	± 752.4	114.52
²²⁶ Ra subseries								
²²⁶ Ra	7637.09	±21.9	110.33	±1.7	1.44	13318.4	±50.7	175.83
²¹⁴ Pb	5184.2	±9.9	68.53	±1.2	1.32	10976.4	±23.1	213.05
²¹⁴ Bi	5065.27	± 25.6	69.33	± 2.8	1.37	10149.8	± 58.1	201.75
²³⁵ U	371.21	±7.3	73.53	±2.5	20.0	318.36	±11.1	105.57
²³² Th series								
²²⁸ Ac	30.57	±4.5	2.22	±0.5	7.28	27.27	±3.4	96.49
²⁰⁸ T1	29.66	± 2.0	-	-	0	28.29	±3.6	95.38
Average	30.12	±3.3	2.23	±0.5	7.4	27.78	±3.5	99.63
⁴⁰ K	211.16	±11.8	80.76	±3.6		373.27	±23.5	215.0
$^{238}U/^{235}U$	21.696		22.191			21.768		
²³⁴ U/ ²³⁸ U	0.849		1.038			0.858		
226 Ra/ 238 U	0.948		0.068			1.922		

K3(Calcareous shale) Wadi Nasab								
Radionuclide	Original		Solution	1	Leachability	Residual		Summation
								(Residual+solution)
	(Bq/Kg)		(Bq/l)		(%)	(Bq/Kg)		(%)
²³⁸ Useries								
²³⁴ Th	3764.45	±33.6	1009.09	±9.5	26.81	2498.49	±30.5	93.18
^{234m} Pa	3700.58	±273.7	930.28	±83.4	25.14	2493.19	±226.1	92.51
Average	3732.52	±153.7	969.69	±46.5	25.98	2495.84	±128.3	92.85
²³⁴ U	4747.17	±402.5	1982.55	±80.9	41.76	5037.53	±151.3	147.88
²³⁰ Th	11544.3	±168.2	1985.04	±57.7		9361.24	±204.5	98.28
²²⁶ Ra subseries								
²²⁶ Ra	12040.1	±36.8	252.84	±9.4	2.1	13377.6	±53.1	113.21
²¹⁴ Pb	6681.92	±12.0	120.27	±3.9	1.8	9286.23	±21.5	140.77
²¹⁴ Bi	6443.97	±31.1	111.16	±9.6	1.73	8548.65	±54.0	134.38
²³⁵ U	176.62	±7.4	44.78	±2.4	25.35	116.09	± 8.8	91.08
²³² Th series								
²²⁸ Ac	29.59	±3.2	4.64	±0.4	15.68	24.77	± 4.4	99.39
²⁰⁸ Tl	28.05	±2.3	4.91	±0.7	17.5	24.24	±3.2	103.92
Average	28.82	±2.7	4.77	±0.5	16.55	24.51	±3.8	101.59
⁴⁰ K	342.6	±20.1	122.15	±6.0		322.03	±18.7	129.65
²³⁸ U/ ²³⁵ U	21.133		21.653			21.499		
234U/238U	1.272		2.045			2.018		
226 Ra/ 238 U	3.226		0.363			5.36		
	K14(clayet	one) Wadi I	Vacah					
De Norme 11.1	AT+(Clayst	onej wauli	C-1-+		T	D		Comment
Kadionuclide	Onginal		Solution		Leachability	Residual		Summation
			(T) (T)					(Residual+solution
	(Bq/Kg)		(Bd/I)		(%)	(Bq/Kg)		(%)
²³⁸ Useries								
²³⁴ Th	1433.94	±16.5	129.74	±3.1	9.05	1923.79	±21.8	143.21
^{234m} Pa	1414.85	±80.4	129.29	±17.4	9.14	1725.52	±134.8	131.1
Average	1424.39	±48.4	129.52	±10.2	9.09	1824.66	±78.3	137.19
234U	1321.51	±207.8	143.16	±40.7	10.8	4732.56	± 184.1	368.95
²³⁰ Th	1456.42	±99.8	37.18	±15.9		2707.96	±159.2	188.49
²²⁶ Ra subseries								
²²⁶ Ra	1989.93	±15.9	25.03	±0.9	1.26	2611.61	±22.7	132.5
²¹⁴ Pb	1313.74	±6.1	11.27	±0.6	0.86	1601.67	±8.9	122.77
²¹⁴ Bi	1259.78	±16.1	14.79	±1.0	1.17	1477.85	±22.5	118.48
235U	66.025	±3.5	6.1	±0.4	9.24	81.27	±5.1	132.33
²³² Th series								
²²⁸ Ac	52.6	±2.7	-	-	-	70.69	±3.8	134.39
²⁰⁸ Tl	52.33	±2.1	5.05	±0.4	9.65	64.94	±2.7	133.75
212Bi	50.003	±5.6	-	-	-	-	-	-
Average	51.71	±3.4	5.05	±0.4	9.78	67.82	±3.2	140.92
40 K	469.76	±13.7	99.02	±3.5		667.76	±20.0	163.23
238U/235U	21.57		21.225			22.452		
²³⁴ U/ ²³⁸ U	0.928		1.105			2.594		
220 Ra/238 U	1.397		0.193			1.431		
Radionuclide	K15 (silts	stone) Wad	li Sad El Ba	nat				
	Original		Solution	n	Leachability	Residual		Summation
								(Residual+solution
	(Bq/Kg)		(Bq/l)		(%)	(Bq/Kg)		(%)
³⁸ Useries								
34Th	1063.35	±13.9	55.07	±2.1	5.18	1663.13	±21.9	161.58
^{34m} Pa	1020.06	±61.9	52.09	±13.4	5.11	1408.52	±114.5	143.19
verage	1041.71	±37.9	53.58	±7.7	5.14	1535.83	±68.2	152.58
³⁴ U	1233.1	±71.8	84.55	±27.4	6.86	3077.48	±142.3	256.43
30Th	994.29	±82.7	27.5	±9.9		1692.13	±167.0	172.95
²⁶ Ra subseries								
²⁶ Ra	1215.53	±10.5	13.31	±0.7	1.09	1718.54	±18.7	142.48
¹⁴ Pb	1096.56	±4.9	9.47	±0.4	0.86	1521.1	±8.7	139.58
¹⁴ Bi	1078.27	±12.6	13.25	±0.8	1.23	1389.43	±21.5	130.09
³⁵ U	47.95	±3.5	2.509	±0.3	5.23	72.106	±3.7	155.61
³² Th-series								
²⁸ Ac	107.45	±3.5	4.1	±0.5	3.82	114.77	±4.5	110.63

²⁰⁸Tl ²¹²Bi 103.35 107.46 ±2.1 ±6.3 5.35 ±0.3 5.18 115.28 ± 3.2 116.72 Average ⁴⁰K ²³⁸U/²³⁵U 4.72 4.45 115.03 ±3.9 106.09 ± 2.8 ± 0.4 112.88 **81.65** 21.354 1.578 **324.32** 21.299 2.004 **182.71** 21.724 1.184 222.19 ±8.9 ± 2.8 ±15.2 ²³⁴U/²³⁸U ²²⁶Ra/²³⁸U 1.167 0.248 1.119

Factors Controlling Radionactides Migration within Different Mea										
Radionuclide	K21 (siltstone) Wadi Um Hamd									
	Original		Solution		Leachability	Residual		Summation		
					-			(Residual+solution)		
	(Bq/Kg)		(Bq/l)		(%)	(Bq/Kg)		(%)		
²³⁸ Useries										
234Th	8678.9	±30.6	4891.5	±17.6	56.36	7234.97	±36.7	139.72		
^{234m} Pa	8582.77	±111.1	4706.7	±75.5	54.84	7270.68	±247.8	139.55		
Average	8630.84	± 70.8	4799.1	±46.5	55.6	7252.83	±142.3	139.64		
²³⁴ U	8550.92	±342.9	7627.4	±303.5	89.2	9975.87	±1322	205.86		
230Th	8640.25	±155.7	3449.4	±65.0		12151.62	±311.2	180.56		
²²⁶ Ra subseries										
²²⁶ Ra	10020.2	±20.5	753.81	±4.6	7.52	20445.23	±63.2	211.56		
²¹⁴ Pb	8920.13	± 8.6	173.93	±1.6	1.95	19667.95	±26.5	222.44		
²¹⁴ Bi	8891.01	±23.0	173.35	±4.3	1.95	18145.29	±65.7	206.04		
²³⁵ U	403.26	±5.6	220.68	±3.2	54.72	332.92	±12.6	137.28		
²³² Th-series										
²²⁸ Ac	63.09	±3.1	5.96	±0.7	9.45	68.04	±5.9	117.29		
²⁰⁸ Tl	61.58	± 1.8	5.32	±0.6	8.64	65.03	± 4.4	114.24		
Average	62.34	± 2.4	5.64	±0.5	9.05	66.54	±5.2	115.78		
⁴⁰ K	819.37	±12.8	95.32	±4.0		1196	±25.4	157.6		
²³⁸ U/ ²³⁵ U	21.403		21.75			21.79				

D · () a

1.375

2.819

Selective leaching studies have shown that uranium isotopes are leached to the same extent but that is not observed in ²³⁴U, hence the difference between ²³⁴U and ²³⁸U leaching percent could represent the ²³⁴U percent that resulted from α -recoil as shown in **table (4)** and (**Fig.2**). The difference in the resulting values may be related to the rock type [El-Aassy et al., 2017].

1.589

0.157

Table (4): Transferring of 234 U by chemical leaching and physical α -recoil.

Location	Rock	Sample	²³⁴ U Chamical transfor (9/)	²³⁴ U Physical transfor (9/)
	Туре		Chemical transfer (76)	r hysical transfer (76)
Wadi Nasab	Calc. Shale	K1	20.26	4.5
	Calc. Shale	K3	25.98	15.78
	Claystone	K14	9.09	1.74
Wadi Sad El-Banat	Siltstone	K15	5.14	1.72
Wadi Um Hamd	Siltstone	K21	55.6	33.6

(Fig.2): Chemical and physical transfer of ²³⁴U to leachate.

IV. Conclusions

It is noticed that, there is a difference in γ -activity between the summation of activities of residual and pregnant solution with the activity of the original sample. This phenomenon is varied in magnitude within the different radionuclides. The type of sample plays its role in these variations. Sometimes, there is an attenuation

of the gamma activities during the leaching process, due to the presence of high Pb concentration. The behavior of radionuclides (²³⁸U, ²³⁵U, ²³⁴U, ²²⁶Ra, ²¹⁴Pb, ²¹⁴Bi, ²³²Th and ⁴⁰K) was studied during the acid leaching process, the nuclides before ²²⁶Ra in the ²³⁸U decay series are easily released in the pregnant solutions

234U/238U

226Ra/238U

0.991

1.161

than the ²²⁶Ra itself and the nuclides after it (²¹⁴Pb and ²¹⁴Bi), these are concentrated in the residuals. The ²³⁵U has nearly the same leachability as ²³⁸U, while ²³²Th is immobile except in the presence of organic matters. The uranium isotopes are leached to the same extent but that the same is not observed between ²³⁴U and ²³⁸U due to the effect of α -recoil phenomenon.

References

- Andersen M. B, Erel Y and Bourdon B., (2009): "Experimental Evidence for ²³⁴U-²³⁸U Fractionation During Granite Weathering with Implications for ²³⁴U/²³⁸U in Natural Waters", Geochimica et Cosmochimica Acta, V. 73, PP. 4124-4141.
- [2]. Anjos, R.M.; Veiga, R.; Soares, T.; Santos, A.M.A.; Aguiar J.G.; Frascá, M.H.B.O.; Brage, J.A.P.; Uzêda, D.; Mangia, L.; Facure, A.; Mosquera, B.; Carvalho, C. and Gomes, P.R.S., (2005): "Natural Radionuclide Distribution in Brazilian Commercial Granites", Radiation Measurements, V.39, PP.245-253.
- [3]. Bourdon B, Bureau S, Andersen M. B, Pili E and Hubert A., (2009): "Weasthering Rates from Top to Bottom in a Carbonate Environment", Chem. Geol, Vol. 258(3-4), PP. 275-287.
- [4]. **Depaolo D. J, Maher K, Christensen J. N and Mcmanus J., (2006):** "Sediment Transport Time Measured with U-series Isotopes: Results from ODP North Atlantic Drift Site 984", Earth and Planetary Science, V. 74, PP. 47-53.
- [5]. El Aassy I. E., El Feky M. G., El Kasaby M. A., Ibrahim E. M., Sewefi S. and Attia R. M., (2017): "Behavior of Radionuclides during Acidic Leaching Processes of Different Rock Materials, Allouga Locality, Southwestern Sinai, Egypt", International Journal of Scientific & Engineering Research, V. 8, Issue 1, ISSN 2229-5518.
- [6]. El Aassy I.E, Botros N.H, Abdel Razik A, Sherif H, Al Moafy A, Aita S, El Terb R and Al Shami A.S., (1986): "Report on the Prospection and Proving of Some Radioactive Occurrences in West Central Sinai, Egypt", Internal Report, Nuclear Materials Authority, Cairo.
- [7]. Fernandes H.M, Filho F.F.L.S, Perez V, Franklin M.R and Gomiero L.A., (2006): "Radioecological Characterization of a Uranium Mining Site Located in a Semi-Arid Region in Brazil", Journal of Environmental Radioactivity, V. 88, PP. 140-157.
- [8]. Ferry, C., P. Richon, A. Beneito and M. Robé., (2002): "Evaluation of the effect of a cover layer on radon exhalation from uranium mill tailings: transient radon flux analysis". Journal of Environmental Radioactivity, 63: 49-64.
- [9]. **IAEA, "International Atomic Energy Agency". (1987):** "Preparation and Certification of IAEA Gamma Spectrometry Reference Materials, RGU-1, RGTh-1 and RGK-1". International Atomic Energy Agency. Report-IAEA/RL/148.
- [10]. Kigoshi K., (1971): "Alpha Recoil Thorium-234: Dissolution into Water and Uranium-234 / Uranium-238 Disequilibrium in Nature", Science 173, PP. 47-48.
- [11]. Megumi K and Mamuro T., (1977): "Concentration of Uranium Series Nuclides in Soil Particles in Relation to Their Size", Journal of Geophysical Research, V. 82, PP. 353-356.
- [12]. Pekala M, Kramers JD and Waber HN (2010): "²³⁴U/²³⁸U Activity Ratio Disequilibrium Technique for Studying Uranium Mobility in the Opalinus Clay at Mont Terri, Switzerland". Appl Radiat Isot 68:984–992.
- [13]. Porcelli, D., Swarzenski, P.W., (2003): "The behavior or U- and Th-series nuclides in groundwater". In: Bourdon, B., et al. (Eds.), Reviews in Mineralogy and Geochemistry: Uranium Series Geochemistry, vol. 52. Mineralogical Society of America, Washington DC, pp. 317-361.
- [14]. Powell B A., Hughes L. D., Soreefan A. M., Falta D., Wall M., DeVol T. A., (2007): "Elevated concentrations of primordial radionuclides in sediments from the Reedy River and surrounding creeks in Simpsonville, South Carolina", Journal of Environmental Radioactivity, V. 94 P.121-128.
- [15]. Sam AK., (2000): "The state of disequilibrium between U and Th series isotopes in marine sediments from the Sudanese Red Sea Cost", In: Fifth Arab conference on the peaceful uses of atomic energy, Beirut.
- [16]. **Technical Reports Series No.295, (1989):** "Measurement of Radionuclides in Food and the Environment", A Guidebook, IAEA, Vienna-Austria.
- [17]. Umanskii, A.B. and Klyushnikov A.M.,(2012): "Bioleaching of low grade uranium ore containing pyrite using A. ferrooxidansand A. thiooxidans". Journal of Radio analytical and Nuclear Chemistry. DOI 10.1007/s10967-012-1816-9.
- [18]. UNSCEAR, United Nations Scientific Committee on the Effect of Atomic Radiation, (2010): "Sources and Effects of Ionizing Radiation". Report to General Assembly with Scientific Annexes, United Nations, New York.
- [19]. Walley El-Dine N, (2008): "Study of natural radioactivity and the state of radioactive disequilibrium in U-series for rock samples, North Eastern Desert, Egypt.", Appl Radiat Isot 66:80-85
- [20]. White A. F and Brantley S. L., (2003): "The Effect of Time on the Weathering of Silicate Minerals: Why Do Weathering Rates Differ in the Laboratory and Field?", Chem. Geol., V. 202(3-4), PP. 479-506.

E.S. Abd El-Halim "Factors Controlling Radionuclides Migration within Different Media." IOSR Journal of Applied Physics (IOSR-JAP), vol. 9, no. 6, 2017, pp. 34-41.

DOI: 10.9790/4861-0906033441