Volume-6 ~ Issue-5
- Citation
- Abstract
- Reference
- Full PDF
Keywords: Multicast routing, geographic multicast, wireless networks, mobile ad hoc networks, geographic routing, scalable, robust, mobility prediction.
INFOCOM '01, Apr. 2001.
[2] R. Beraldi and R. Baldoni, "A Caching Scheme for Routing in Mobile Ad Hoc Networks and Its Application to ZRP," IEEE Trans.
Computers, vol. 52, no. 8, pp. 1051-1062, Aug. 2003.
[3] W.Su, S.Lee, and M.Gerla, "Mobility prediction in wireless networks." In MILCOM 2000. 21st Centuary Military Communications
Conference Proceedings, vol. 1, 2000.
[4] L.Bajaj, M.Takai, R.Ahuja, K.Tang, R.Bagrodia, and M.Gerla, "GloMoSim: A Scalable network simulation environment," UCLA
Computer Science Dept Technical Report, vol. 990027, 1999.
[5] D. R. Johnson and D. A. Maltz, "Dynamic source routing in adhoc wireless networks," in Mobile Computing, (ed. T. Imielinski and H.
Korth), Kluwer Academic Publishers, 19%.
[6] S.Lee, W.Su, and M.Gerla, "On-demand multicast routing protocol in multi-hop wireless mobile networks," Mobile Networks and
Applications, vol. 7, no. 6, pp. 441-453, 2002.
[7] P.Sinha, R.Sivakumar, and V.Bhargavan, "MCEDAR: Multicast Core-Extraction Distributed Ad-hoc routing." In 1999 IEEE Wireless
Communications and Networking Conferences, 1999, WCNC, 19999, pp 1313-1317
[8] J.Jetcheva and D.Johnson, "Adaptive demand driven multicast routing in multi-hop wireless ad-hoc networks," in proceedings of the
2nd ACM international symposium on mobile ad-hoc networking and computing. ACM New york, NY, USA, 2001, pp. 33-44.
[9] Y.Choi, B.Kim, K.Jung, H.Cho, and S.Kim, " An Overlay Multicast mechanism using single-hop clustering and tree division for mobile
ad-hoc networks," in IEEE 63rd Vehicular Technology Conference, 2006. VTC 2006-Spring, vol. 2, 2006.
[10] J.J. Garcia-Luna-Aceves and E. Madruga, "The Core-Assisted Mesh Protocol," IEEE J. on Selected Areas in Comm., vol. 17, no. 8,
pp. 1380-1394, Aug. 1999.
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Clustering of collinear data points in lower dimensions |
Country | : | India |
Authors | : | Terence Johnson1, Jervin Zen Lobo |
: | 10.9790/0661-0650811 | |
Keywords - Collinear clustering, Maximal distance clustering, Minimum Euclidean distance, Jmin, Jmax.
[2] David Hand, Heikki Mannila and Padhraic Smyth, Principles of data mining (Cambridge, MA: MIT Press, 2001)
[3] Jiawei Han and Micheline Kamber, Data mining-concepts and techniques (San Francisco CA, USA, Morgan Kaufmann Publishers,
2001)
[4] A.K. Jain, R.C. Dubes, Algorithms for clustering data, (Englewood Cliffs, NJ: Prentice-Hall, 1998)
[5] M.R. Anderberg, Cluster analysis for application, (Academic Press, New York, 1973)
[6] J.A. Hartigan, Clustering Algorithms, (Wiley, New York, 1975)
[7] Hand, D.J., Blunt, G., Kelly, M.G. & Adams, N.M. (2000), Data mining for fun and profit, (Statistical Science) 15, 111-131.
[8] Fayyad, U., Data Mining and Knowledge Discovery, Editorial, Proc. IEEE , 1:5-10, 1997. W.J. Book, Modelling design and control
of flexible manipulator arms: A tutorial review, Proc. 29th IEEE Conf. on Decision and Control, San Francisco, CA, 1990, 500-506
[9] Aggarwal, Charu C., Han,Jiawei,Wang, Jianyong, & Yu, Philip S. A framework for clustering evolving data streams, VLDB
Endowment, Proceedings of the 29th international conference on very large data bases, Vldb '2003, 81–92.
- Citation
- Abstract
- Reference
- Full PDF
Keywords:K-Means clustering, k-NN Classifier, Missing Data, Percentage, Predictive Performance
[1] J.L Peugh, and C.K. Enders, "Missing data in Educational Research: A review of reporting practices and suggestions for
improvement, "Review of Educational Research vol 74, pp 525-556, 2004.
[2] S-R. R. Ester-Lydia , Pino – Mejias Manuel, Lopez Coello Maria-Dolores , Cubiles – de – la- Vega, "Missing value imputation on
Missing completely at Random data using multilayer perceptrons, "Neural Networks, no 1, 2011.
[3] B.Mehala, P.Ranjit Jeba Thangaiah and K.Vivekanandan , " Selecting Scalable Algorithms to Deal with Missing Values" ,
International Journal of Recent Trends in engineering, vol.1. No 2, May 2009.
[4] Gustavo E.A.P.A. Batista and Maria Carolina Monard , "A Study of K-Nearest Neighbour as an Imputation method".
[5] Allison, P.D-"Missing Data", Thousand Oaks, CA: Sage -2001.
[6] Bennett, D.A. "How can I deal with missing data in my study? Australian and New Zealand Journal of Public Health", 25, pp.464 –
469, 2001.
[7] Kin Wagstaff ,"Clustering with Missing Values : No Imputation Required" -NSF grant IIS-0325329,pp.1-10.
[8] S.Hichao Zhang , Jilian Zhang, Xiaofeng Zhu, Yongsong Qin,chengqi Zhang , "Missing Value Imputation Based on Data
Clustering", Springer-Verlag Berlin, Heidelberg ,2008.
[9] Richard J.Hathuway , James C.Bezex, Jacalyn M.Huband , "Scalable Visual Assessment of Cluster Tendency for Large Data Sets",
Pattern Recognition ,Volume 39, Issue 7,pp,1315-1324- Feb 2006.
[10] Qinbao Song, Martin Shepperd ,"A New Imputation Method for Small Software Project Data set", The Journal of Systems and
Software 80 ,pp,51–62, 2007
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Virtual Network Computing Based Droid desktop |
Country | : | India |
Authors | : | Vaidehi Murarka, Sneha Mehta,Dishant Upadhyay, Abhijit Lal |
: | 10.9790/0661-0651620 | |
Keywords:Protocol, Virtual NetworkComputing, Screenshots, Client-Server, Zooming-Panning, Mouse Driver
[2] www.realvnc.com/docs/rfbproto.pdf
[3] www.realvnc.com/products/vnc/.../5.../VNCUser_Guide.pdf
[4] www.wikipedia.org/wiki/Virtual_Network_Computing
[5] www.wikipedia.org/wiki/RFB_protocol
- Citation
- Abstract
- Reference
- Full PDF
Keywords:Classification, Level-set segmentation, Pattern recognition, TV denoising, Wavelet Transform.
symposia 2001, pp 353-371
[2] P. Suetnes, P.Fua and A. J. Hanson, Computational strategies for object recognition, ACM Computing Surveys, Vol. 24, pp. 05-
61, 1992.
[3] Venkatadri.M, Dr. Lokanatha C. Reddy, A Review on Data mining from Past to the Future, International Journal of Computer
Applications, Volume 15– No.7, February 2011, 112-116.
[4] Jean-Luc Starck and Fionn Murtagh, Handbook of Astronomical image and Data Analysis, Springer-Verlag-2002
[5] E. Aptoula, S. Lef`evre and C. Collet, Mathematical morphology applied to the segmentation and classification of galaxies in
multispectral images, European Signal Processing Conference (EUSIPCO), Italy (2006)"
[6] Dibyendu Ghoshal, Pinaki Pratim Acharjya, A Modified Watershed Algorithm for Stellar Image, International Journal of Computer
Applications, Volume 15– No.7, February 2011, 112-116.
[7] M. Frucci and G. Longo, Watershed transform and the segmentation of astronomical images. In Proceedings of Astronomical Data Analysis III, Naples, Italy, April 2004. Qriginal Image Segmented Output Original image Segmented Output
[8] Gonzales, Digital image processing (Pearson Education India, 2009)
[9] K.P Soman, K.I Ramachandran, N.G Reshmi, Insight into wavelet transform, PHI Learning Pvt. Ltd., 2010
[10] A. Manjunath, H.M.Ravikumar,Comparison of Discrete Wavelet Transform (DWT), Lifting Wavelet Transform (LWT) Stationary
Wavelet Transform (SWT) and S-Transform in Power Quality Analysis, European Journal of Scientific Research, Vol.39 No.4
(2010), pp.569-576
- Citation
- Abstract
- Reference
- Full PDF
Paper Type | : | Research Paper |
Title | : | Ranking Preferences to Data by Using R-Trees |
Country | : | India |
Authors | : | Nageswarrao.Vungarala, Manoj Kiran.Somidi, Krishnaiah.R.V. |
: | 10.9790/0661-0653035 | |
Keywords: Spatial data, Top-k spatial.
[1] M.L. Yiu, X. Dai, N. Mamoulis, and M. Vaitis, "Top-k Spatial Preference Queries," Proc. IEEE Int'l Conf. Data Eng. (ICDE),
2007.
[2] N. Bruno, L. Gravano, and A. Marian, "Evaluating Top-k Queries over Web-Accessible Databases," Proc. IEEE Int'l Conf. Data
Eng. (ICDE), 2002.
[3] A. Guttman, "R-Trees: A Dynamic Index Structure for Spatial Searching," Proc. ACM SIGMOD, 1984.
[4] G.R. Hjaltason and H. Samet, "Distance Browsing in Spatial Databases," ACM Trans. Database Systems, vol. 24, no. 2, pp. 265-
318, 1999.
[5] R. Weber, H.-J. Schek, and S. Blott, "A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-
Dimensional Spaces," Proc. Int'l Conf. Very Large Data Bases (VLDB), 1998.
[6] K.S. Beyer, J. Goldstein, R. Ramakrishna, and U. Shaft, "When is' Nearest Neighbor'
[7] Meaningful?" Proc. Seventh Int'l Conf. Database Theory (ICDT), 1999.
[8] R. Fagin, A. Lotem, and M. Naor, "Optimal Aggregation Algorithms for Middleware," Proc. Int'l Symp. Principles of Database
Systems (PODS), 2001.
[9] I.F. Ilyas, W.G. Aref, and A. Elmagarmid, "Supporting Top-k Join Queries in Relational Databases," Proc. 29th Int'l Conf. Very
Large Data Bases (VLDB), 2003.
[10] N. Mamoulis, M.L. Yiu, K.H. Cheng, and D.W. Cheung, "Efficient Top-k Aggregation of Ranked Inputs," ACM Trans. Database
Systems, vol. 32, no. 3, p. 19, 2007.
- Citation
- Abstract
- Reference
- Full PDF
Keywords:Aggregations, SQL, data mining, OLAP, and data set generation.s
[1] C. Ordonez, "Data Set Preprocessing and Transformation in a Database System," Intelligent Data Analysis, vol. 15, no. 4, pp. 613-
631, 2011.
[2] C. Ordonez, "Statistical Model Computation with UDFs," IEEE Trans. Knowledge and Data Eng., vol. 22, no. 12, pp. 1752 -1765,
Dec. 2010.
[3] C. Ordonez and S. Pitchaimalai, "Bayesian Classifiers Programmed in SQL," IEEE Trans. Knowledge and Data Eng., vol. 22, no. 1 ,
pp. 139-144, Jan. 2010.
[4] J. Han and M. Kamber, Data Mining: Concepts and Techniques, first ed. Morgan Kaufmann, 2001.
[5] C. Ordonez, "Integrating K-Means Clustering with a Relational DBMS Using SQL," IEEE Trans. Knowledge and Data Eng., vol.
18, no. 2, pp. 188-201, Feb. 2006.
[6] S. Sarawagi, S. Thomas, and R. Agrawal, "Integrating Association Rule Mining with Relational Database Systems: Alternatives and
Implications," Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '98), pp. 343-354, 1998.
[7] H. Wang, C. Zaniolo, and C.R. Luo, "ATLAS: A Small But Complete SQL Extension for Data Mining and Data Streams," Proc.
29th Int'l Conf. Very Large Data Bases (VLDB '03), pp. 1113- 1116, 2003.
[8] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N. Folkert, A. Gupta, L. Sheng, and S. Subramanian, "Spreadsheets in
RDBMS for OLAP," Proc. ACM SIGMOD Int'l Conf. Management of Data (SIGMOD '03), pp. 52 -63, 2003.
[9] H. Garcia-Molina, J.D. Ullman, and J. Widom, Database Systems: The Complete Book, first ed. Prentice Hall, 2001.
[10] C. Galindo-Legaria and A. Rosenthal, "Outer Join Simplification and Reordering for Query Optimization," ACM Trans. Database
Systems, vol. 22, no. 1, pp. 43-73, 1997.
- Citation
- Abstract
- Reference
- Full PDF
[1] Azzedine Boukerche, Mirela Sechi M, Annoni Notare "Behavior-Based Intrusion Detection in Mobile Phone Systems", Journal of
Parallel and Distributed Computing 62, pp.1476–1490, 2002.
[2] Shabtai, A., et al. Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method. J. Syst.Software
(2010), doi:10.1016/j.jss.2010.03.046
[3] Didier Samfat, Refik Molva, "IDAMN: an Intrusion Detection Architecture for Mobile Networks", INSTITUT EURÉCOM, France
[4] Markus Miettinen, Perttu Halonen, Kimmo Hatonen, "Host-Based Intrusion Detection for Advanced Mobile Devices", Nokia
Research Center, IEEE, 2006.
[5] S. Shimojo et al. (Eds.): HSI 2005, LNCS 3597, pp. 57 – 65, 2005. Springer-Verlag Berlin Heidelberg 2005
[6] Wenkee Lee, "Intrusion Detection Techniques for Mobile Wireless Networks", Mobile Networks and Applications, 2003.
[7] Eugene spafford, Diego Zamboni, "Data collection mechanisms for intrusion detection systems", CERIAS Technical Report, West
Lafayette, IN, 2000.
[8] Jerry Cheng, Starsky H.Y.Wong, Hao Yang and Songwu Lu, "SmartSiren: Virus Detection and Alert for Smartphones",
MobiSys'07, San Juan, Puerto Rico, 2007.
[9] Barak Pearlmutter, Christina Warrender, Stephanie Forrest, "Detecting Intrusions Using System Calls:Alternative Data Models",
New Mexico., 2010.