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Abstract: In software development cost estimation, effort allocation is an important and usually challenging 

task for project management. This paper observes the use of concepts in software effort estimation by analyzing 

group work with organizational strategies as outgoing practice. The purpose is to improve our understanding of 

how software professionals raise different types of information when talking, way of thinking and reaching a 

decision on a software effort estimate.  Software effort estimation is a core task regarding planning, budgeting 

and controlling software development projects. However, providing exact effort estimates is not easy. 

Estimation work is increasingly group based, and to support it, there is a need to reveal how work practices are 

carried out as mutual efforts. This paper contributes to an understanding of the role of concepts in group work 

and of software effort estimation as a specific work practice. In this paper we investigate the estimation practice 

through a detailed data analytical technique with machine learning approach.  
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I. Introduction  

Software development effort estimation is carried out more than once in the life of software project. 

The project acquisition stage is the one where the detail available to estimator is minimal. The confusion of 

estimation arises in this stage. All other stages, progressively, increase the detail and hence reduce uncertainty in 

estimation. Accurate estimation of software development effort is critical because the estimated figure drives the 

budget to be allocated, and if this is beyond allowable limits, the project itself might not be approved. 

Underestimates lead to time pressures to the developers that may negotiation full functional development and 

painstaking testing. In contrast, overestimates can result in noncompetitive contract bids and/or over allocation 

of development resources and personnel [1-5].   

Without the proper data and experience, software development teams usually generate inaccurate 

estimates of the effort required for the product to be developed. As a result, the teams are required to renegotiate 

with the clients to ensure that the product to be developed is within the scope achievable by the development 

team. Without the necessary data, it is nearly impossible for teams to make proper predictions with respect to 

project scope, complexity, and resources required. Typically, projects progress through their life cycles based on 

these inaccurate estimates. This means that regardless of how well or poorly the projects progress, the estimates 

remain constant. When projects begin with the initial overestimation of resources or effort required, the teams 

must negotiate with the clients to reduce the size of the projects.  This often results in clients needing to throw 

away some of the critical core capabilities of the product, thus losing some of the expected benefits they had 

hoped for from the completed project. The reality is that the team may actually have enough resources to deliver 

all of the initial requirements prior to the re-scoping of the project [6, 7].  

On the other hand, when projects underestimate the resources, the teams tend to over promise the goals 

that the project can achieve. As the project progresses towards the end of its life cycle, the team may start to 

realize that the remainder of the project is more than they can manage to complete. When this happens, one 

scenario is that they try to satisfy the client by attempting to complete the project as quickly as possible, while 

the quality of the project may suffer greatly from this attempt and result in higher long-term maintenance costs. 

Another scenario is that they end up delivering a project that is not complete, thus leaving the clients with 

unusable or unsustainable products [8-11]. 

Most systems can be seen from two viewpoints, the user’s view and the developer’s view. The 

perspective of the user relates to what the system can do for the user and function size measure support the 

user’s perspective. The developer sees in terms of the internals of what needs to be built and is able to relate 

better to technical size measures [10].  

When software development teams lack the proper data and experience, they can’t accurately assess 

project size and team capabilities. These unknowns and uncertainties can typically be reduced with proper 

assessments as the project progresses. Unfortunately, team assessments are often overlooked, even though 

personnel uncertainties often have significant influence on the cone of uncertainty.  For most projects, estimates 
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during this phase are expected to be very rough estimates. Budget estimated figures could vary between +30 % 

to -30% of actual numbers.  

The main motivation behind this research is derived from the well-known software cone of uncertainty 

and calibrated to completed projects [Barry Boehm].  Good team performance and accurate software cost and 

schedule estimations are essential in determining the quality and timely delivery of the final product. According 

to Standish report few projects were delivered with full capabilities within budget and schedule. Many projects 

were cancelled, and were either over budget, over schedule, or under-delivered. These numbers are also 

consistent. This figure shows that nearly half the projects were unsuccessful due to issues related to cost and 

schedule estimations, and that software development projects have been consistent in replicating these shortfalls. 

In software cost estimation, effort allocation is an important and usually challenging task for project 

management. Due to the Cone of Uncertainty effect on overall effort estimation and lack of representative effort 

distribution data, project managers often find it difficult to plan for staffing and other team resources. This often 

leads to risky decisions to assign too few or too many people to complete software lifecycle activities. As a 

result, projects with inaccurate resource allocation will generally experience serious schedule delay or cost 

overrun. [12-16]  

The Standish Group estimates that in 2013 the worldwide yearly spending for software projects was 

$750 billion. The United States accounted for about 40% of this number or about $300 billion. Europe spent 

about 25% or $200 billion. Asia accounted for $100 billion. The rest of the world spent the remaining $150 

billion. Canceled or failed projects were 16% or $120 billion. The United States portion was a little higher and 

the European portion was slightly lower. Challenged projects, those that were late, cost more and off-target, 

were 48% or $360 billion. Overruns vary with many legitimate reasons, but The Standish Group estimates in 

2013 the cost of unintended worldwide overruns is about $80 billion; leaving the cost of worldwide project 

software failure to be about $200 billion. The 2009 Standish Report reported that out of the 9000 projects 

surveyed, 32% were delivered with full capability within budget and schedule, 24% were cancelled, and 44% 

were either over budget, over schedule, or under-delivered. These numbers are also consistent with the two 

previous reports in 2004 and 2006 [Standish Group Report].  

 

Year (s) Failed (%) Challenged (%) Succeeded  (%)

2013 16 48 36

2009 24 44 32

2006 19 46 35

2004 15 51 34

The Standish Report on Project  Success

 
Successful projects did not return value to the organization or the users and executive sponsor were 

unsatisfied. In addition to that many challenged projects bring great value to the organization. 

 

 
Figure1.  Standish Chaos Report on Software Projects Success, Failure and Challenged Ratio 
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II. Software Product Development Effort Estimation is a Wicked Problem 
Software Effort Estimation is a wicked problem as one that could be clearly defined only by solving it, 

or by solving part of it. This method assists software industries to estimate the required effort to be spent on 

various activities during requirements, architectural design, development, testing, deployment, operation and 

maintenance.  We do not quote too less, programmers work for overnight that leads to lose the project or end 

doing social service, or loss. Do not quote too high that lose the project. So, be fair to ourselves and our 

customers. Hence, there is need to use of a repeatable, clearly defined and well understood software 

development process that has to be the most effective method. This paradox implies, essentially, that you have 

to solve the problem once in order to clearly define it and then solve it again to create a solution that works. 

There are two ways of constructing a software design: One way is to make it so simple that there are obviously 

no deficiencies and the other is to make it so complicated that there are no obvious deficiencies. The phrase 

software design means the conception, invention, or contrivance of a scheme for turning a specification for a 

computer program into an operational program. Design is the activity that links requirements to coding and 

debugging. A good top-level design provides a structure that can safely contain multiple lower level designs. 

Good design is useful on small projects and indispensable on large projects. [17-30]  

 It's easy to estimate what you know.  

 It's hard to estimate what you know you don't know. 

 It's very hard to estimate things that you don't know you don't know. 

 

  
 

Figure 2. Similarities between Iceberg & Software Product 

 

The Software Development Effort Estimation approach is just like the above one. Since it’s 

development is intangible unlike other product. The iceberg image to the tip represents the software size or its 

functionality. The real issue is not the tip, but what is under the surface of the water and cannot be seen. The 

same is true when you design a software application.  

 

 
Figure 3. The Role Estimator: four images in one: sky, background, top iceberg, and underwater iceberg  
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 The water was calm and the sun was almost directly overhead so that the diver was able to get into the 

water and take the picture. But how could anyone take such a picture? You could never see the underside of an 

iceberg that size in one shot - and where does all the light come from at that depth? 

 In fact, the picture is not real. Ralph Clevenger digitally composed a nature and underwater 

photographer who find the stories circulating about his "impossible" picture amusing. Four separate images 

were used; the sky, the background, the top iceberg, and the underwater iceberg. The picture does, however, 

accurately represent the amount of an iceberg that is hidden underwater. It was designed to illustrate the concept 

of "what you see is not necessarily what you get". The project tracking mechanism allows for development 

teams to constantly monitor the resources required for the teams to complete their project. These estimated 

resources can be updated as necessary depending on the team’s productivity and capability. Software Project 

planning encompasses five major activities – estimation, scheduling, risk analysis, quality management 

planning, and change management planning. Estimation includes your attempt to determine how much money, 

effort, resources, and time it will take to build a specific software-based product. Software project managers 

using information solicited from project stakeholders and software metrics data collected from past projects.  

[31-45] 

 

III. Organizational Strategies & Social Interaction in  Decision Making 
Before taking the final decision data analytical techniques have been played a vital role. Since 

beginning no organization started their business only with service motto. No one will do the business with loss. 

So they need profit.  Decision-making is choosing between alternatives while having incomplete / unreliable 

information about the scenario at hand and with uncertain and unpredictable outcomes of the available 

alternatives, mainly for the sake of expediency. Decisions are made in organizations to tide over the present 

situation / difficulty. Therefore, sometimes decisions may render injustice. One misunderstanding that is 

prevalent is that, the decisions are judgments – it is far from true. We can classify decision in to the following 

classes for our better understanding. [46-51] 

Classification of Decisions 

1. Strategic & Periodic Decisions 

a. Selection Decisions 

i. Products / Services 

ii. Process 

iii. Locations 

iv. Layout 

v. Equipment 

vi. Workforce 

b. Design Decisions 

i. Product design 

ii. Service Design 

iii. Job Design 

iv. Process Design 

v. Control System Design 

vi. Capacity Design 

2. Recurring Decisions 
a. Target Setting 

b. Scheduling 

c. Sequencing 

d. Inventory Control 

e. Cost Control 

f. Maintenance 

3. Planning Decisions 

a. Planning the system 

b. Planning the usage of the system 

4. Organizing Decisions 

a. Organization Structure 

b. Organizing the jobs 

c. Staffing 

d. Work and Workstation Design 

e. Standards of Performance 

f. Compensation Systems 

5. Controlling Decisions 
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a. Quality 

b. Quantity 

c. Schedule 

d. Inventories 

e. Costs 

f. Maintenance 

 It is not necessary that all decision makers make all the above-mentioned decisions. All of us 

make some of those decisions. It is perhaps, very few people – especially entrepreneurs – make all the above-

mentioned decisions. Besides the following things are to be considered for social interaction:  

Relationship with Customers 

 Satisfaction  

 On time Delivery  

 Accountability  

 Top Priority  

 Maintenance  

Benefits from other Sectors 

 Govt. / R & D support  

 Financial 

 Tax  

 Business Expansion 

 Recognition  

Relationship with Employees 

 Training / Job Satisfaction  

 Partnership / Organization Hierarchy    

 Policies / Timings / Importance  

 Job Recognition / Security 

 Therefore before finalize the price of the product they need consider the above in different perceptive.  

At the same time they need to satisfy the stakeholder in order to promote the product. [52-62] 

 
Figure 4. Organizational Strategies Role in Estimation 

 

IV. Methodology For Estimation With Machine Learning 
This article describes two methods of machine learning, which we use to build estimators of software 

development effort from historical data with Neuro-Fuzzy Expert System. In order to optimize the results data 

analytical techniques have been used [63-71]. First we need to find the size of the product then it is easy to find 

the required effort. Also capabilities of the team members in terms of project complexity and risk factors to be 

measured. After that we can focus on estimating the total cost of the product and as a result we can schedule the 

product [2, 4-7].  

 The process encompasses certain key ingredients that include 

 Developing a good project execution plan 
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 Converting the goal into a well-structured requirement specification  

 Dividing the project into well-defined phases 

 Allocating the right resources to the right job 

 Working at the cost of project execution 

 Delivering the project within the overall timeframe 

  

 Formal estimation models not tailored to a particular organization’s own context, may be very 

inaccurate. Use of own historical data is consequently crucial if one cannot be sure that the estimation model’s 

core relationships are based on similar project contexts [72-88]. 

 Formulating the problem and fitting into Machine learning. Domain knowledge is more required in 

identifying the features in the form of requirements that can represent the data set. All the problems may not be 

easily expressed. Without proper understanding of distribution of the data, formulation of the problem, 

preprocessing, assumptions and presumptions of machine learning algorithms implementation is not that easy 

task. [89-101] 

 In order to solve the estimation problem the following key points to be addressed: 

 Unavailability of data in a suitable format 

 Incomplete, noisy, and inconsistent data  

 Assessing the expected error of a learning algorithm on a problem 

 Data normalization and standardization 

 Relationships and correlations can be hidden within large amounts of data 

 Human expertise does not exist for all kinds of problems 

 Human designers often produce machines that do not work as desired in the environments in 

which they are not used. 

 The amount of knowledge available about certain tasks might be too large for explicit 

encoding by humans 

 Environments change over time. 

 New knowledge about tasks is constantly being discovered by humans. It may be difficult to 

continuously re-design systems “by hand”. 

 What algorithms are available for learning a concept? How well do they perform? 

 How much training data is sufficient to learn a concept with high confidence? 

 When is it useful to use prior knowledge? 

 What are best tasks for a system to learn? 

 What is the best way for a system to represent its knowledge? 

 How can we optimize the accuracy on future data points? 

 How can we formulate application problems as machine learning paradigms? 

 
 

Figure 5. Model of Neuro-Fuzzy Expert Estimation System with Data Analytics tools 
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 In Software Industry size estimation is a precursor to effort, schedule and cost estimation, the accuracy 

of these estimates depend on the accuracy of the size estimates.  

 Unfamiliar project  

For the rest of this report, the definition of unfamiliar projects, or teams, means they either have little 

knowledge or little experience with the type of project being developed.  

This includes the following: 

Inexperienced in general 

Experienced, but in a new domain 

Experienced, but using new technologies 

 Continuous assessment 

Continuous assessment is a type of assessment methodology that takes place over a period of time. In the 

software development context, the process is done parallel to the development, instead of being done at 

major milestones or reviews. 

 Traditional development project  

A type of project in which, the product must be developed from scratch.  

The development team must write the majority of the source code to implement the end user functionalities. 

A type of project that aims at integrating and/or tailoring either one, or a set of, non-developmental items or 

commercial off-the-shelf products.  

 

 
Figure 6. Optimized Estimation Method 

 

To use this method, one needs to be aware of the techniques but need not be an expert. What is needed 

is the knowledge of the software project or which they are making an estimate. This method facilitates making a 

new estimate thru copying an existing one and modifying it. This also facilitates making a new estimate from an 

existing estimate - thus improving estimation productivity greatly. Thus is a time and effort saving mechanism 

resulting in decreasing pressure on the valuable time of Project Managers / Leaders and leads to better 

productivity in general. It is important to point out that though producing high quality software requires more 

effort; this additional effort is more than recovered by lower maintenance effort and trouble [101]. 

The estimation process, model and technique that we decide to use should take into account all the 

below parameters appropriately: 

 Availability and stability of the developer environment 

 Team capability, skill and experience 

 Team stability / manpower turnover 

 Maturity of the processes 

 Reusable software available to the project 

 Reusable software to be build by the project 

 Extent of communication possible with the user / customers 

 Extent of automated tools used for  software development and maintenance 

 Extent and degree of detail of the required user documentation 

 Cohesion of stakeholders and teams 
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.

Figure7. The Role of Estimator in Software Industry 

 

V. Expected Outcome With Data Analytics 
Sometimes there is a dominant factor that influences the decision-making. For example – for a mining 

company there is no alternative but to open it near the mine. A maritime ship liner needs to be near the seacoast. 

Location of market is another dominant factor. Other cases may include emotional factors of the entrepreneur – 

like his native place when it comes to opening his company or the expertise of the entrepreneur when it comes 

to selecting the product and so on. In day-to-day affairs, customer preference becomes a dominant factor, around 

which we have to manage. In some cases like Y2K, the time becomes the dominant factor. In some cases, the 

statutory obligations become the dominant factor. When a dominant factor is present in a decision scenario – the 

decision is made for us. The software size is the most important factor that affects the software cost. Here the 

system will consider data analytical techniques to analyze the appropriate decision.   The lines of code and 

function point are the most popular software size metrics used in practice. The cost to fix a defect rises 

dramatically as the time from when it’s introduced. These remains true whether the project is highly sequential 

or highly iterative. The main reason is here doing around five to ten percent of requirements gathering and 

design based on that [2, 4, 5]. 

With high objective the organizations may establish the service level agreements for resolving issues. The 

targets pertain to factors that will measure the effectiveness of the system [6].  

 

 Analytical Decision Making – this style implies that a thorough analysis is carried out in which all 

possible alternatives are considered along with their costs and possible results are analyzed and the optimal 

decision is selected. This is used by knowledgeable people and somewhat less experienced in their field. The 

scenarios that come to mind where this style is appropriate are –  

 

a) Strategic decisions which have long term impact – especially selection and design decisions  

b) There is time available for making the decision 
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Figure 8. Organizational Strategies on different project levels 

 

Standard method for measuring software development from the customer’s point of view is always 

different. Quantifies functionality provided to the user based primarily on logical design. Measure software 

development and maintenance independently of technology used for implementation [6].  

 

 

 
Figure 9. Social Interaction among team members in different project 

 

VI. Conclusion 

In this paper the author’s approach is not to criticize the existing popular estimation models. Most of 

the models are useful. Different models cater different needs. Existing models focused either on size or line of 

code. Actual required effort estimated by the existing models. Besides, organizational strategies and social 

interaction among the group members are the key attributes in    software estimation. The accurate estimation 

immediately affects the success of project. Data analytical techniques will help the estimators to track the 

project status and take a correct measure in order to improve the quality of product. With the help of Machine 

Learning and Big Data Analytics tools & techniques optimization is possible. Further research will be continued 

with sufficient amount of industrial data with other parameters. 
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