
IOSR Journal of Computer Engineering (IOSR-JCE) 

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. III (Mar-Apr. 2014), PP 81-86 

www.iosrjournals.org 

www.iosrjournals.org                                                             81 | Page 

 

Survey on Load Rebalancing For Distributed File Systems in 

Clouds 
 

Ms. Nithya Kuriakose
1
, Ms. Shinu Acca Mani

2
 

1, 2
(Department of Computer Science and Engineering Nehru College of Engineering and Research Center, 

Pampady, Thrissur, Kerala) 

 

Abstract: Cloud Computing is an emerging technology, it is based on demand service in which shared 

resources, information, software and other devices are provided according to the clients to the requirements at 

specific time with the availability of internet. Load balancing is one of the challenging issue in cloud computing. 

An efficient load balancing makes cloud computing more efficient and improves user satisfaction. It includes 

fault tolerance, high availability, scalability, flexibility, reduced overhead for users, reduced cost of ownership, 

on demand services etc. Distributed file systems are key building blocks for cloud computing applications based 

on the Map Reduce programming paradigm. In such file systems, nodes at the same time serve computing and 

storage functions. Files can be created, deleted, and appended dynamically. This results in load imbalance in a 

distributed file system; that is, the file chunks are not distributed uniformly as possible among the nodes.  

Keywords: Cloud computing, Load rebalancing, Distributed File system 

 

I. Introduction 

Cloud computing is a model to provide convenient, on-demand access to a shared pool configurable 

computing resources. In cloud computing, IT-related capabilities are provided as services, accessible without 

requiring detailed knowledge of the underlying technologies, and with minimal management effort. A cloud 

system is also user friendly, in the respect that it requires less expertise to use. It is sold on demand, typically by 

the minute or the hour. A cloud can be private or public. A public cloud sells services to anyone on the Internet. 

A private cloud is a proprietary network or a data center that supplies hosted services to a limited number of 

people. Private or public, the goal of cloud computing is to provide easy, scalable access to computing resources 

and IT services. Cloud computing provide everything as a service to their users, like as: storage of data as a 

service, application software as a service, computing platform as a service and computing infrastructure as a 

service etc. Up-and-coming distributed file systems in production systems strongly depend on a central node for 

chunk reallocation. This dependence is clearly insufficient in an extensive, failure-prone environment because 

the central load balancer is put under considerable workload that is linearly scaled with the system size, and may 

thus become the performance bottleneck and the single point of failure. The aim to reduce network traffic or 

movement cost caused by rebalancing the loads of nodes as much as possible to maximize the network 

bandwidth available to normal applications. Moreover, as failure is the norm, nodes are newly added to sustain 

the overall system performance resulting in the heterogeneity of nodes. Exploiting capable nodes to improve the 

system performance is thus demanded. 

The popular file system for networked computers is the Network File System. It is a way to share files 

between machines on a network as if the files were located on the client’s local hard drive. Frangipani is a 

scalable distributed file system that manages a collection of disks on multiple machines as a single shared pool 

of storage. The machines are required to be under a common administrator and be able to communicate 

securely. The first one is that it depends on a single name node to manage almost all operations of every data 

block in the file system. As a result it can be a bottleneck resource and a single point of failure. [1] 

 

II.      Related Work 
Distributed Hash Tables are key building block for variety of distributed applications. It uses the 

hashing approach; both the keys and peers are hashed onto a 1D ring. Keys are then assigned to the nearest peer 

in the clockwise direction. Servers connected to their neighbors in the ring and searching for a key reduces to 

traversing ring this result a considerable load imbalance. One of the solutions is the use of virtual peers that is 

for each peers, assigning number of virtual peers. In this case large size request may not be processed because of 

the tightly bounded expected value. Substitute solution is that of power of two choice paradigms. In this 

paradigm use standard hashing scenarios using bins to reduce or balance the load. Less shared routing 

information stored at each peer. [2] The use of range partitioning can make partitioning a dynamic relation 

across a large number of disks/nodes. Range portioning is frequently popular in large scale parallel as well as 

peer-to-peer databases. Load balancing is necessary in such scenarios to eliminate skew. This introduces 

asymptotically optimal online load-balancing algorithms that guarantee a constant imbalance ratio. The data 

http://searchcloudcomputing.techtarget.com/definition/public-cloud
http://searchcloudcomputing.techtarget.com/definition/private-cloud


Survey on Load Rebalancing For Distributed File Systems in Clouds 

www.iosrjournals.org                                                             82 | Page 

movement cost per tuple insert or delete is constant, and was shown to be close to 1 in experiments. Advantages 

are Decentralized System, Automatically performs all operations, Avoid Data Skew.  One of the disadvantages 

is that it take too much of time to complete the task. [3] Antony Rowstron et al presents the design and 

evaluation of Pastry, a scalable, distributed object location and routing scheme for wide-area peer-to-peer 

applications. Pastry performs application level routing and object location in a potentially very large overlay 

network of nodes connected via the Internet.  In application level routing, different applications will have 

different requirements according to that routing is performed. For example video conferencing requires high 

requirements, if any one use this path the requirement will decreases and hence leads to complete no sharing of 

path. In the case of low requirement application such as email and text messages gives a busy path. According to 

the requirement application the routing is performed. It can be used to support a wide range of peer-to-peer 

applications like global data storage, global data sharing, and naming. Advantages are Decentralized System, 

Automatically performs all operations and one of the disadvantages is that Every time lookup operation is 

needed. [4] 

David R. Karger et al have given several provably efficient load balancing protocols for distributed 

data storage in P2P systems. Algorithms are simple, and easy to implement, so an obvious next research step 

should be a practical evaluation of these schemes. In addition, several concrete open problems follow from our 

work. First, it might be possible to further improve the consistent hashing scheme. It uses the hashing approach; 

both the keys and peers are hashed onto a one dimensional ring. Keys are then assigned to the nearest peer in the 

clockwise direction. Servers connected to their neighbors in the ring and searching for a key reduces to 

traversing ring this result a considerable load imbalance. One of the solutions is the use of virtual peers that is for each 

peers, assigning number of virtual peers. In this case large size request may not be processed because of the tightly bounded 

expected value. Second, our range search data structure does not easily generalize to more than one order. For example when 

storing music files, one might want to index them by both artist and song title, allowing lookups according to two orderings. 

It provides efficient load balancing but hard to achieve. [5] Jeffrey Dean et al introduce the MapReduce programming model 

has been successfully used at Google for many different purposes. Attribute this success to several reasons. First, the model 

is easy to use, even for programmers without experience with parallel and distributed systems, since it hides the details of 

parallelization, fault-tolerance, locality optimization, and load balancing. Second, a large variety of problems are easily 

expressible as MapReduce computations. MapReduce is the programming model and associated implementation for 

processing and generating large data sets. Users specify a map function that processes a key-value pair to generate a set of 

intermediate key-value pairs and reduce function that merges all intermediate value associated with the same 

intermediate key [6]. It has been emerging as a popular paradigm for data intensive computing in clustered 

environment such as enterprise data centers and cloud which solves parallel problems using large number of 

computers collectively called as cluster. Advantages are highly scalable, Can compute large data set, but it is 

Expensive, More time to compute the reducing functions. 

The different qualitative metrics or parameters that are considered important for load balancing in 

cloudcomputing [10] are Throughput, Associated overhead, Fault tolerant, Migration time, Response time, 

Resource utilization, Scalability, and Performance. The major concerns of cloud computing that is Load 

balancing. The goal of load balancing is to increase client satisfaction and maximize resource utilization and 

substantially increase the performance of the cloud system thereby reducing the energy consumed and the 

carbon emission rate. Also the purpose of load balancing is to make every processor or machine perform the 

same amount of work throughout which helps in increasing the throughput, minimizing the response time and 

reducing the number of job rejection. Comparisons of papers are shown in the table 1 bellow. 

 
Section Method Advantages Disadvantages 

Pastry: Scalable, distributed 
object location and routing for 

large-scale P2P systems 

 
Distributed File 

System 

Decentralized System Automatically 
performs all operations 

Every time lookup 
operation is 

needed 

Online Balancing of Range-
Partitioned Data with 

Applications to P2P 

 
Range Partitioning 

Decentralized System 
Automatically performs all 

operations Avoid Data Skew 

Take too much of 
time to complete 

the task 

Simple Efficient Load 

Balancing Algorithms for P2P 

Systems 

 

Hashing scheme and 

Range Search DS 

 

Provide efficient load balancing 

 

Difficult to 

achieve 

Simple Load Balancing for DHT 

 

 

Power of two choice 

 

Can take more number of keys 

 

Less shared 
routing 

information 

MapReduce: Simplified Data 

Processing on Large Clusters 

MapReduce 

Programming model 

Highly scalable 

Can compute large data set 

 Expensive 

More time to 
compute the 

reducing 

function 

Table 1: Comparison table 

 



Survey on Load Rebalancing For Distributed File Systems in Clouds 

www.iosrjournals.org                                                             83 | Page 

III.        Load Rebalancing 
Load balancing is the process of distributing the load among various nodes of a distributed system to 

improve both resource utilization and job response time while also avoiding a situation where some of the nodes 

are heavily loaded while other nodes are idle or doing very little work. Load balancing ensures that all the 

processor in the system or every node in the network does approximately the equal amount of work at any 

instant of time. This technique can be sender initiated, receiver initiated or symmetric type. The objective is to 

develop an effective load balancing algorithm using divisible load scheduling theorem to maximize or minimize 

different performance parameters for the clouds of different sizes. It is a process of reassigning the total load to 

the individual nodes of the collective system to make resource utilization effective and to improve the response 

time of the job, simultaneously removing a condition in which some of the nodes are over loaded while some 

others are under loaded. A load balancing algorithm which is dynamic in nature does not consider the previous 

state or behavior of the system, that is, it depends on the present behavior of the system. The important things to 

consider while developing such algorithm are : estimation of load, comparison of load, stability of different 

system, performance of system, interaction between the nodes, nature of work to be transferred, selecting of 

nodes and many other ones. 

Load rebalancing eliminates the dependence on central nodes. The storage nodes are structured as a 

network based on distributed hash tables (DHT). DHTs enable nodes to self-organize and repair while 

constantly offering lookup functionality in node dynamism, simplifying the system provision and management. 

The algorithm is compared against a centralized approach in a production system and a competing distributed 

solution presented in the literature. The simulation results indicate that although each node performs our load 

rebalancing algorithm independently without acquiring global knowledge. Specifically, in this study, suggest 

offloading the load rebalancing task to storage nodes by having the storage nodes balance their loads 

spontaneously. This eliminates the dependence on central nodes. The storage nodes are structured as a network 

based on distributed hash tables discovering a file chunk can simply refer to rapid key lookup in DHTs, given 

that a unique handle is assigned to each file chunk. DHTs enable nodes to self-organize and repair while 

constantly offering lookup functionality in node dynamism, simplifying the system provision and management. 

It includes chunk creation, DHT formulation, Load balancing algorithm, Replica Management. [7][8][9][11][12] 

A. Chunk creation: A file is partitioned into a number of chunks allocated in distinct nodes so that Map 

Reduce Tasks can be performed in parallel over the nodes. The load of a node is typically proportional 

to the number of file chunks the node possesses. Because the files in a cloud can be arbitrarily created, 

deleted, and appended, and nodes can be upgraded, replaced and added in the file system, the file 

chunks are not distributed as uniformly as possible among the nodes. Objective is to allocate the 

chunks of files as uniformly as possible among the nodes such that no node manages an excessive 

number of chunks. 

 

 
Fig 1: Chunk Creation Module 

 

B. DHT formulation: The storage nodes are structured as a network based on DHTs, e.g., discovering a 

file chunk can simply refer to rapid key lookup in DHTs, given that a unique handle is assigned to each 

file chunk. DHTs enable nodes to self-organize and Repair while constantly offering lookup 

functionality in node dynamism, simplifying the system provision and management. The chunk servers 

in our proposal are organized as a DHT network. Typical DHTs guarantee that if a node leaves, then its 

locally hosted chunks are reliably migrated to its successor; if a node joins, then it allocates the chunks 

whose IDs immediately precede the joining node from its successor to manage. 

 

 

 

 

 

 



Survey on Load Rebalancing For Distributed File Systems in Clouds 

www.iosrjournals.org                                                             84 | Page 

 

 

 

           

 

   

 

 

 

Fig 2: DHT Formulation Module 

 

C. Load balancing algorithm: Each chunk server node I first estimate whether it is under loaded or overloaded 

without global knowledge. A node is light if the number of chunks it hosts is smaller than the threshold.  Load 

statuses of a sample of randomly selected nodes. Specifically, each node contacts a number of randomly 

selected nodes in the system and builds a vector denoted by V. A vector consists of entries, and each entry 

contains the ID, network address and load status of a randomly selected node. 

 

 
Fig 3: Load Balancing Module 

 

D. Replica Management: In distributed file systems, a constant number of replicas for each file chunk are 

maintained in distinct nodes to improve file availability with respect to node failures and departures. Our current 

load balancing algorithm does not treat replicas distinctly. It is unlikely that two or more replicas are placed in 

an identical node because of the random nature of our load rebalancing algorithm.  

 

 

 

     

 

      

 

Fig 4: Replica Management Module 

 

IV.      Load Balancing Algorithm 
1. Initialize server and its sub-servers 

2. Establish connection between sub-server and servers using the IP or Port number. 

3. Upload File to server that should be shared. 

4. Split the file into multiple chunks 

5. Calculate the each sub server memory 

6. Divide the total chunks value by total number of sub-servers 

7. Upload each chunk into sub servers based on its memory capacity 

8. If Capacity is less then transfer the excess chunks into next sub-servers 

9. Each chunk will be appended with a index value. 

0 

1 

i 

n-1 

Client 

Replica 

Management 

Service 

 
Services Services 

 

Services 

 



Survey on Load Rebalancing For Distributed File Systems in Clouds 

www.iosrjournals.org                                                             85 | Page 

10. When the client request for a file, that will be received from different sub-servers based on the index value. 

11. Client collects all the chunks then the file will be decrypted, then that will be viewed by client. 

Fig 5 shows the System Architecture, clients can upload and download the files from the main server 

through the sub server. The system is centralized so that only through the sub server the operations are 

performed. 

  

                                                                    Main Server 

    

                      

Sub Server 

                                                                    

    File upload and Download                                           Centralized System 

 

 

 

                       

                                                                Client 

                                          Fig 5: System Architecture 

  

 

V.       Conclusion 
The proposal strives to balance the loads of nodes and reduce the demanded movement cost as much as 

possible, while taking advantage of physical network locality and node heterogeneity. In the absence of 

representative real workloads (i.e., the distributions of file chunks in a large scale storage system) in the public 

domain, we have investigated the performance of the proposal and compared it against competing algorithms 

through synthesized probabilistic distributions of file chunks. Emerging distributed file systems in production 

systems strongly depend on a central node for chunk reallocation. This dependence is clearly inadequate in a 

large-scale, failure-prone environment because the central load balancer is put under considerable workload that 

is linearly scaled with the system size, and may thus become the performance bottleneck and the single point of 

failure. The algorithm is compared against a centralized approach in a production system and a competing 

distributed solution presented in the literature. The simulation results indicate that the proposal is comparable 

with the existing centralized approach and considerably outperforms the prior distributed algorithm in terms of 

load imbalance factor, movement cost, and algorithmic overhead, a fully distributed load rebalancing algorithm 

is presented to cope with the load imbalance problem. In future increase efficiency and effectiveness of design 

are further validated by analytical models and a real implementation with a small-scale cluster environment. 

Highly desirable to improve the network efficiency by reducing each user’s download time.  

 

References 
[1]  Hung-Chang Hsiao, Hsueh-Yi Chung,Haiying Shen, and Yu-Chang Chao,”Load Rebalancing for Distributed File Systems in 

Clouds,” IEEE Transactions On Parallel And Distributed Systems, Vol. 24, No. 5, May 2013. 



Survey on Load Rebalancing For Distributed File Systems in Clouds 

www.iosrjournals.org                                                             86 | Page 

[2]  J.W. Byers, J. Considine, and M. Mitzenmacher, “Simple Load Balancing for Distributed Hash Tables,” Proc. First Int’l Workshop 

Peer-to-Peer Systems (IPTPS ’03), pp. 80-87, Feb. 2003. 

[3]  P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of Range-Partitioned Data with Applications to Peer-to-Peer 
Systems,” Proc. 13th Int’l Conf. Very Large Data Bases (VLDB ’04), pp. 444-455, Sept. 2004. 

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object Location and Routing for Large-Scale Peer-to-Peer Systems,” 

Proc. IFIP/ACM Int’l Conf. Distributed Systems Platforms Heidelberg, pp. 161-172, Nov. 2001. 
[5]  D. Karger and M. Ruhl, “Simple Efficient Load Balancing Algorithms for Peer-to-Peer Systems,” Proc. 16th ACM Symp. Parallel 

Algorithms and Architectures (SPAA ’04), pp. 36-43, June 2004. 

[6]  J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” Proc. Sixth Symp. Operating System 
Design and Implementation (OSDI ’04), pp. 137-150, Dec. 2004. 

[7]  T.Sakthisri and S.Pallavi, “Balancing Blocks For Distributed File System In Clouds By Using Load Rebalancing Algorithm,” Proc. 

International Conference on Information Systems and Computing (ICISC-2013), pp. 220, Jan. 2013. 
[8]  Revathy R and A.Illayarajaa, “Efficient Load Re Balancing Algorithm for Distributed File Systems,” Proc. International Journal of 

Innovative Technology and Exploring Engineering (IJITEE) ISSN: 2278-3075, Volume-2, Issue-6, May 2013. 

[9]  Yatendra Sahu and R.K. Pateriya, “Cloud Computing Overview With Load Balancing Techniques,” Proc. International Journal Of 
Computer Applications (0975 – 8887) Volume 65– No.24, March 2013. 

[10]  Aarti Khetan, Vivek Bhushan and Subhash Chand Gupta, “A Novel Survey On Load Balancing In Cloud Computing,” Proc. 

International Journal Of Engineering Research & Technology (IJERT) ISSN: 2278-0181,   Vol. 2 Issue 2, February 2013. 
[11]  S.Indira and P.Jyothi, “Load Rebalancing In Large-Scale Distributed File System,” Proc. International Journal Of Reviews On 

Recent Electronics And Computer Science (IJRRECS), Volume-1, Issue-6, Issn 2321-5461, October 2013. 

[12]  Ch. Mounika, L. RamaDevi and P.Nikhila, “Simple Load Rebalancing For Distributed Hash Tables In Cloud,” Proc. IOSR Journal 

of Computer Engineering (IOSR-JCE), e-ISSN: 2278-0661, p- ISSN: 2278-8727 Volume 13, Issue 2, pp 60-65, Jul. - Aug. 2013. 


