
IOSR Journal of Computer Engineering (IOSR-JCE)

e-ISSN: 2278-0661, p- ISSN: 2278-8727Volume 16, Issue 2, Ver. VIII (Mar-Apr. 2014), PP 45-48

www.iosrjournals.org

www.iosrjournals.org 45 | Page

Change-Proneness of Software Components

Ankita Urvashi
1
, Anamika Chhabra

 2

1
(Computer Science, Indo Global College of Engineering, India)

2
(Computer Science, Indo Global College of Engineering, India)

Abstract : In this research paper, we have done a statistical study on the factors that influence the rate of

change of piece of code (class or groups of class of working together).After conducting systematic literature

survey with stake holders of a various software development. It was found that during the life cycle of the

application development ,it undergoes many organic changes due to change in objectives of building the

software, and it is now normal that the software remains in continuous change and measuring change in the

software process is critical for the software to remain in use as well as for its relevant, hence ,In this paper

we have found the trend on which the change-proneness can be modeled as function, a relationship equation

that can help us to predict what will happen [good or bad] if a particular metric value changes. Previous work

have assumed that all trends relationship are linear in nature, while dataset collected for shows it is highly non-

linear. Therefore, in our current research work we have found non-linear data fitting algorithm bi-square

robust gives best possible results as it more accurate with realistic with trend and pass through most of test of

significances ,thus we get a promising approach to measure change-proneness of the software development

process .

Keywords: Application Development, Change-Proneness, Software Metrics, Software Stability

I. Introduction
Which gives us function equation to define the relationship of each metric with respect to change-

proneness?, There is an urgent need for presenting the of various statistics for measuring the change-proneness

for knowing what is wrong with our project in progress so that there is no burn out between the stakeholder

working in the life cycle of the application. Since, components of software are like organic compounds that

change internally and externally with multiple environmental and business reasons, for usage of software to

continue, and for it to remain non obsolete it needs to remain constant state of change to remain in sync with the

real business life. The major concern is maintenance and further development of the software without conflicts,

issues and bugs , therefore , when software components undergo adaptation , enrichment and feature additions

there is always a risk of too much change leading to change is overall structure and form of the software itself

that it may lead to the huge burnout between the stake holders of the project in progress .in fact, changeability is

defined as a measure of impact of changes made to a module on the rest of the system .

Changeability is the ease with which a source code can be modified. It is assessed through metrics

calculated from the history of changes made. These metrics reflect how well or bad is the change for the project

in terms of it degree however, the choice of these metrics is matter of real concern as they must be chosen in

such a manner that they must measure the true image and state of the software components with respect to the

basic principles of software stability with openness for further change .Therefore, in next section of this research

paper we discuss how previous and contemporary researchers have address this issue.

II. Related Work
Many change-proneness measure for the class-objects has based on the size and complexity. Some of

the case studies been carried out for linking change-proneness and complexity so as to know if ay correlation

exists between change-proneness and metrics. It is difficult to determine how far an individual study can be

generalized, so Claire Ingram has suggested techniques (linear regression) relies on developing an accurate

method for predicting change-proneness [1]. Subversion2 project from CARMEN system was used to obtain the

list of code files which was representative of datasets. After eliminating the useless data there were 254 unique

files left for study.

Metrics used in this were cccc packages consisting of 6 separate

metrics(LOC,NOC,DIT,WMC,CBO,MVG).data sets has been analyzed using Krushkal-Walis and Mann

Whitney tests followed by linear regression, that finds only limited evidences exists between

predictors(LOC,NOC,DIT,WMC) tested for change proneness then some metric values can differentiate

groups of components. The data gathered over a longer project duration may reveal different patterns as a

decreasing number of components are left unchanged. [2] Many other methods are described to identify and

visualize class interactions that are the most change-prone. That method was object-oriented software developed

Change-Proneness of Software Components

www.iosrjournals.org 46 | Page

using design patterns [3]. Even design patterns that are actually used to develop software designs that are less

prone to lot of changes. Besides these many other case studies even concluded that change-proneness can be

detected between the components with high or with low values for metrics providing an area beneficial for

further studies. [4]

III. Proposed Methodology
The proposed methodology here tries to fulfil the basic objective of measuring the change-proneness in

terms of its rate in change influenced by the number of contributors to the code production and the code metrics

that significantly influence the change in the code with respect to the classes authored, furthermore, it attempts

to find the degree of change-proneness [low, medium and high] as well as follows:

1) Define the change-proneness with the mathematical expression using factors that influence its rate of

change.

2) Define the factors or the metrics with mathematical expression using the relations with respect to the best

practices in building code and the application, conformance to the coding standards and designs and with

respect to rate to changes the project itself can bear for finally to remain stable in the final release.

3) Select the project open source repositories which are undergoing large number of additions and deletion on

same piece of code multiple times.

4) Run the tool that can for extraction of the metric values for each compiled classes

5) Group of each class object, which is found by finding the numeric ranges of the conformance ranges of

each metric which lead to best practices in software engineering. However, for finding the violation of

these conformance ranges meant either, there is huge opportunity in refactoring the class object in question

or it is undergoing too many changes, therefore standard deviation was also considered for calculating the

change-proneness slope.

Next, step was to find the trend and mathematical function which are best represent the relationship between

the change-proneness as function of each metric. Therefore, in this step, we got find the rate of each metric

using slope method and data fitting algorithms[5] to arrive at the function representing the mathematical relation

between the change-proneness and each metric measured refer Table 5.1

IV. Results and Discussion
When there are multiple factors contributing to a particular function f(y) and the nature of the data is

nonlinear , few assumptions can be really taken to drive some mathematical expression , therefore , in this

research work we have analyzed each factor contributing to the change-proneness in such a manner that the

data is fitted with multiple combination of data fitting techniques to finally arrive at particular logical

mathematical expression which would represent the true relation representing the independent and dependent

variable . The basic approach is to curve fitting, which is the process of constructing a curve, or mathematical

function, that has the best fit to a series of data points, [the change-proneness metrics] possibly subject to

constraints.[6] [Conformance, standards and best practices in software development] Curve fitting can involve

either interpolation, where an exact fit to the data is required, or building a smoothing, in which a "smooth"

function is constructed that approximately fits the data. A related topic is regression analysis, which focuses

more on questions of statistical inference such as how much uncertainty is present in a curve that is fit to data

observed with random errors. [7] Therefore, to completing this purpose we conducted many experiments which

would help find the best suited combinational optimization method for finding the relationship as shown in the

Table 5.2

It is apparent from the various experiment conducted that bi-square optimization method is the best

possible combination which can really help us to get the mathematical expression representing the change-

proneness as function of the metrics, However, it must be noted that, graphical measures are more beneficial

than numerical measures because they allow you to view the entire data set at once, and they can easily display a

wide range of relationships between the model and the data. The numerical measures are more narrowly focused

on a particular aspect of the data and often try to compress that information into a single number. In practice,

depending on your data and analysis requirements, you might need to use both types to determine the best fit.

4.1 Interpretation of Statistical Test conducted by the above experiments

a) Coefficient of Goodness: This is value which shows how much is the model successful in fitting or

building the model, Sometimes, it is possible that none of fits can be considered suitable for the dataset in

question, based on these methods. In this case, it might be that you need to select a different model or some

other combination, that why we designed so many combinational experiments. Hence, the goodness-of-fit

measures indicate that a particular fit is suitable have been measured here.

b) Error Measures: The Sum of squares due to error is statistic measures that totals the deviation of the

response values [change-proneness vs. metrics] from the fit to the response values. It is also called the summed

Change-Proneness of Software Components

www.iosrjournals.org 47 | Page

square of residuals and is usually labeled as SSE, from this we are able find how far is the data fitting, it is

acceptable for us or not.

4.2 Slope (Rate of Change)

This measure give how the x axis changes with respect to the y-axis, from which the rate of change per

metric can be known and understood. The slope of a regression line (b) represents the rate of change in y as x

changes. Because y is dependent on x, the slope describes the predicted values of y given x. When using the

ordinary least squares method, one of the most common linear regressions, slope, is found by calculating b as

the covariance [8]

(1)

a) Of x and y, divided by the sum of squares (variance) of x, the slope must be calculated before the y-

intercept when using a linear regression, as the intercept is calculated using the slope. The slope of a regression

line is used with a t-statistic to test the significance of a linear relationship between x and y. But in our case , we

had to make valid data model and had to further optimize the slope curve using bi-square optimization method

to best fit the line and get the appropriate slope ‘m’ representing the rate of change in software methods .

b) R-Square : This measures helps how far good the model is able to explain the variations in the

datasets fitted by the algorithm , it should be equal to 1 ideally for it to explain the complete the complete

variation, and it also explains the correlation between the predicted values (change-proneness) against the

response values (metrics) .

V. Tables
5.1 Table: Relationship between Metrics and Change-Proneness

S No. Metric Name Description Relationship with Change-Proneness

1. WMC (Weighted Methods per
Class)

It is the measure of number of methods
defined in a class.

High WMC in a class means it is highly
application specific and cannot be

reused thus increase in WMC ∝ Bug
density and 1/Code Quality

2. DIT (Depth of Inheritance) It is the measure of maximum Inheritance

path from the class to the root class.
Increase in DIT ∝ Increase in density of
bugs and 1/Code Quality

3. NOC (Number Of Children) It is the number of immediate child classes

derived from base class.

High NOC indicates high reuse of base

class thus indicates fewer faults. High

NOC ∝ Less susceptibility for change

4. CBO (Coupling Between
Object Classes)

It is the number of classes to which a class is
coupled i.e. Two classes are coupled when

methods declared in one class use methods or

instance variables defined by the other class.

High CBO is not desirable hence it
makes the design monolithic and

dependent and hence much more

susceptible to changes since either of
the coupled classes face changes others

will face too.

High CBO ∝ High susceptibility for
change.

5. LOC (Lines Of Code) It measures the size of a computer program by
counting the number of executable

statements.

High LOC value may or may not affect
certain aspects of the software.

6. RFC (Response For a Class) The response set of a class is a set of methods

that can potentially be executed in response to
a message received by an object of that class.

RFC is simply the number of methods in the

set.

High RFC ∝ High susceptibility of
changes, Density of bugs and 1/Code

Quality

7. LCOM (Lack Of Cohesion Of

Methods)

Take each pair of methods in the class. If they

access disjoint sets of instance variables,

increase P by one.
If they share at least one variable access,

increase Q by one.

LCOM = P - Q , if P > Q LCOM = 0
otherwise

LCOM = 0 indicates a cohesive class.

LCOM1 > 0 indicates that the class needs or
can be split into two or more classes, since its

variables belong in disjoint sets.

High LCOM value ∝ class more
susceptible to errors and might be

disaggregated into two or more classes

It can help to track whether the
cohesion principle is adhered to in the

design of an application and advice

changes.

Change-Proneness of Software Components

www.iosrjournals.org 48 | Page

8. Ca (Afferent couplings) A class's afferent couplings is a measure of
how many other classes use the specific class.

High Ca ∝ High susceptibility for
change

9. NPM (Number Of Public
Methods)

The NPM metric simply counts all the
methods in a class that are declared as public.

It can be used to measure the size of an API

provided by a package.

High NPM means class is highly
accessible to other parts of software

thus High NPM ∝ High susceptibility
for changes and complexity.

5.2 Table : Results
Method Mathematical

Equation model

Coefficient of

Goodness

Error Slope (Rate of

Change)

 Adjusted R-

square

WMC y=m*x + c 0.9126 2.734e+05 -2.179 0.912

DIT y=m*x + c 0.9116 2.763e+05 -1.168 0.911

NOC y=m*x + c 0.9131 2.718e+05 -3.471 0.9125

CBO y=m*x + c 0.9119 2.754e+05 0.04461 0.9113

RFC y=m*x + c 0.9123 2.743e+05 -0.4156 0.9117

LCOM y=m*x + c 0.9126 2.733e+05 -1.008 0.912

Ca y=m*x + c 0.9127 2.731e+05 -2.179 0.912

NPM y=m*x + c 0.913 2.72e+05 0.1208 0.9124

VI. Conclusion
In apparent from the statistical test conducted to valid the optimized the dataset for getting smooth

curve and hence proper slope value for finding rate of change of the component (java classes) are producing

correct and valid results . Thus, in this process we have been able to contribute in a novel way as this

combinational algorithms has not been used in previous work to find the change-proneness using such a

strategy.

VII. Future Scope
In this current research a mathematical function representing the relationship of metrics that influence

the refactoring opportunities leading to lot of changes have been developed using real time dataset collected and

made of open source project taken from Github repository , for future scope , we suggest that the nature of

distribution of the metrics with respect to the change-proneness must also be understood with the help of

calculation of probability density function ,since , a probability density function (pdf), or density of a

continuous random variable, is a function that describes the relative likelihood for this random variable to take

on a given value , this would give better insight into the nature of mathematical relationship between the

change-proneness and the factors/random variables that influence it .

References
[1] Ingram, C.; Riddle, S., "Using early stage project data to predict change-proneness," Emerging Trends in Software Metrics

(WETSoM), 2012 3rd International Workshop on, vol., no., pp.42, 48, 3-3 June

[2] Selvarani, R.; Nair, T.R.G.; Prasad, V.K., "Estimation of Defect Proneness Using Design Complexity Measurements in Object-
Oriented Software," 2009 International Conference on Signal Processing Systems , vol., no., pp.766,770, 15-17 May 2009

[3] Elish, M.O.; Rine, D., "Investigation of metrics for object-oriented design logical stability," Software Maintenance and
Reengineering, 2003. Proceedings. Seventh European Conference on, vol., no., pp.193, 200, 26-28 March 2003

 [4] Cheng Zhang; Budgen, D., "What Do We Know about the Effectiveness of Software Design Patterns?" Software Engineering, IEEE

Transactions on, vol.38, no.5, pp.1213, 1231, Sept.-Oct. 2012
[5] Okamura, H.; Dohi, T.; Osaki, S., "Software reliability growth model with normal distribution and its parameter estimation,"

Quality, Reliability, Risk, Maintenance, and Safety Engineering (ICQR2MSE), 2011 International Conference on , vol., no.,

pp.411,416, 17-19 June 2011

[6] Dwyer, D.; D'Onofrio, P., "Improvements in estimating software reliability from growth test data," Reliability and Maintainability

Symposium (RAMS), 2011 Proceedings - Annual , vol., no., pp.1,5, 24-27 Jan. 2011

[7] Debbarma, M.K.; Kar, N.; Saha, A., "Static and dynamic software metrics complexity analysis in regression testing," Computer
Communication and Informatics (ICCCI), 2012 International Conference on , vol., no., pp.1,6, 10-12 Jan. 2012

[8] Srikanth, H.; Cohen, M.B., "Regression testing in Software as a Service: An industrial case study," Software Maintenance (ICSM),

2011 27th IEEE International Conference on , vol., no., pp.372,381, 25-30 Sept. 2011

