Task allocation model for Balance utilization of Available resource in Multiprocessor Environment

Ruchi Gupta¹Dr. P.K Yadav²

Research Scholar, Uttarakhand Technical University, Dehradun Central Building Research Institute, Roorkee, U.K, India.

Abstract: Distributed computing systems are of current interest due to the advancement of microprocessor technology and computer network. The prime function of effective utilization of distributed system is accurately mapping of task and tasks their scheduling on different processors for reducing their total finish time. Total runtime is taken time for all module with the runtime of tasks and their communication cost among tasks. In Distributed processing system, partitioning of a task into modules and proper allocation of module among processors are more important factor for efficient utilization of resources. In this paper, we discuss allocation of a set of 'm' module of a task to a set of 'n' processors (where m > n) to get an optimal utilization of these modules in distributed processing environment. While designing the model Per Bit Processing Rate, Inter Task Communication Cost, Task Size has been taken into consideration. We consider the constraints of minimizing execution cost and their Inter task communication and maximize the overall throughput of the system to be taking as constraints in such a way that allocated load on all the processor is balances.

Keyword: Distributed computing, Task Allocation, Module distribution, Execution Cost, Communication Cost, Task Size.

I. Introduction

A distributed computing system (DCS) consists of a set of multiple processors interconnected by communication links. A very common interesting problem in DCS is the task allocation. Partitioning of the application software into small module of task and the proper allocation of these module among processors are one of the important parameter which determine the efficient utilization of available resources (1) (2) the allocation policy could be either static or dynamic. A task allocation model that allocate application task among the processor in distributed system satisfying minimum inter-processor communication cost, balanced utilization of each processor and all application requirement. (3). A module incurs an execution cost that may be different for each processor assignment and optimal solution to the problem of allocating communication periodic tasks to heterogeneous processing nodes in a distributed system has been reported (4). Yadav et al have reported a reliability evaluations of distributed system based on failure data analysis (5).Kumar et al. Developed a model for allocating m task to n processors divided it into any number of phases (6). The main objective of this problem is to minimize the total program execution period by allocating the tasks in such a way that the allocated load on each processor should be balanced. The model utilized the mathematical programming technique for execution of the module considering that each module to be executed through all the processors. (7). we use the problem of task allocation in heterogeneous distributed system with the goal of maximizing the system reliability (8). To solve the proposed model we utilizing a task allocation algorithm for optimum utilization of Processor's in heterogeneous distributed computing system (9) (12) to obtain the better result in reasonable amount of time.

II. Mathematical Modeling

The main objective of this problem is to minimize the total program execution period by allocating the tasks in such a way that the allocated load on each processor should be balanced. The model utilized the mathematical Programming technique for execution of the module considering that each module to be executed through all the processors. The Execution Cost and Inter Tasks Communication Cost are considered for developing the algorithm. The specific task allocation problem being addressed as follows:-

Considered an application program consisting of a set of "m" task $T = \{t_1, t_2, t_3, t_4...\}$ and heterogeneous distributed processing system consisting a set of 'n' processor $P = \{p_1, p_2, p_3, p_4...\}$. (10) Where we assume that m > n, and allocated each of m module to one of the processor in such a manner that total system time is minimizing and processing load on the processor is balanced. We partition the task in different size of module and design an algorithm for allocation of these modules in distributed processing environment.

Input Parameter

- Processor Service Rate (PSR)
- ✤ Task Set (TM)
- Execution Cost (EC)
- ✤ Inter Task Communication Cost(ITCC)

A. Processor Service Rate (PSR)

Processor service rate is the execution rate Er_j (Per Bit Processor) of each processor which implemented in the form of linear arrayPSR(j). Where (j=1, 2,3,4,5,6,7,8.....n).

$$PSR(j) = \begin{vmatrix} Er1 \\ Er2 \\ Er3 \\ Er4 \\ Er5 \\ \vdots \\ Ern \end{vmatrix}$$

B. Task Size (TM)

It depends on the length of task (in bytes).we takes task size and break them in multiple module of task and put in the form of linear array TM(i) (where i=1,2,3,4,5,6,....m).

$$Tm(i) = \begin{vmatrix} tm1 \\ tm2 \\ tm3 \\ tm4 \\ tm5 \\ \vdots \\ tmm \end{vmatrix}$$

C. Inter Task Communication Cost(ITCC)

Inter Task Communication Cost between executing task and another tasks is taken in the form of matrix Inter Task Communication Cost Matrix (ITCC). The Inter Processor Communication cost CC_{ik} of the interacting tasks ts_i and ts_k is the minimum cost required for the exchange of data units between the processors during the process of execution. (11) Here we use ITCC as symmetric matrix which is order of m*m.

D. Execution Cost (EC)

The execution cost ec_{ij} of each module ts_i depends on the capability of processor p_j to which they assigned and the work to be performed by each module. To determine the EC, initially we have product of PSR (j) and TM (i) and store them in Execution Cost Matrix (ECM (i,j)) of order m*n.

1. NOTATION

N= No of Processor M= No of Module **PSR**= Processor Service Rate **TM** =Task Module **ITCM=** Inter Task Communication Cost **ECM** = Execution Cost Matrix ITCC =Inter Task Communication Cost TAM = Task Set MLT= Minimally Linked Task Tnon_Ass= Table for Non Assigned Task **TAss**= Table for Assigned Task **FEC** = Fused Execution Cost **FCC** =Fused Communication Cost AFC = Additive Fused Cost **PEC** = Processor Execution Cost PITCC= Processor Inter Task Communication Cost **TOC** = Total Order Cost MSR = Mean Services Rate **TRP** = Throughput

III. Implementation Of The Model

To justify the procedure discussed in section a system has been considered consisting a set of 3 heterogeneous processors i.e p_1 , p_2 , p_3 and a one task size we partition this task in 9 modules as: T (tm_1 , tm_2 , tm_3 , tm_4 , tm_5 , tm_6 , tm_7 , tm_8 , tm_9). Inputs:-

 $PSR() = \begin{vmatrix} 0.585 \\ 0.756 \\ 0.679 \end{vmatrix}$

Task Size =2268 After Partitions the task in module

$$\begin{array}{c} \mbox{tm1} \ | 165 \\ \mbox{tm2} \ | 235 \\ \mbox{tm3} \ | 293 \\ \mbox{tm4} \ | 277 \\ \mbox{TM}(\) = \mbox{tm5} \ | 252 \\ \mbox{tm6} \ | 293 \\ \mbox{tm7} \ | 242 \\ \mbox{tm8} \ | 224 \\ \mbox{tm9} \ | 287 \end{array}$$

Computer ECM (,)

	tm1	165				
	tm2	235				
	tm3	293				
	tm4	277	1.0	-1		m2 I
ECM(,) =	tm5	252	*		0.754	p_{3}
	tm6	293 10.585	0.756	0.6791		
	tm7	242	2			
	tm8	224				
	tm9	287			-	-
	tm1		1	<i>p</i>	2	p3
	tm?	96.5	525	124.	740	112.035
	tm3	137.	.475	177.	.660	159.565
	tmA.	171.	.405	221.	.508	198.947
F(M()) =	tm5	162.	.045	209.	.412	188.083
Lein (,) =	tm6	147.	420	190.	512	171.108
	tm7	171.	405	221.	508	198.947
	tmQ	141.	570	182.	952	164.318
	tan0	131.	.040	169.	344	152.096
	un19	I _{167.}	.895	216.	.972	194.873

Input ITCC(i,k)-

		Tm ₁	Tm ₂	Tm ₃	Tm ₄	Tm ₅	Tm ₆	Tm ₇	Tm ₈	Tm ₉
	Tm ₁	0	38	45	41	44	39	46	47	40
	Tm ₂	38	0	41	44	35	30	31	45	36
	Tm ₃	45	41	0	35	30	31	45	36	38
ITCC _(i,k) =	Tm ₄	41	44	35	0	31	45	36	38	30
	Tm ₅	44	35	30	31	0	36	38	29	41
	Tm ₆	39	30	31	45	36	0	29	41	44
	Tm ₇	46	31	45	36	38	29	0	30	28
	Tm ₈	47	45	36	38	29	41	30	0	31
	Tm ₉	40	36	38	30	41	44	28	31	0

Compute the MLT() for all tasks by using equation $2\,$

$$\begin{array}{c} tm1 & | 340 \\ tm2 & | 300 \\ tm3 & | 301 \\ tm4 & | 300 \\ tm5 & | 284 \\ tm6 & | 295 \\ tm7 & | 283 \\ tm8 & | 297 \\ tm9 & | 288 \\ \end{array}$$

Sort the MLT () in ascending order

		tm7	283
		tm5	284
		tm9	288
		tm6	295
MLT() =	tm8	297
-	-	tm2	300
		tm4	300
		tm3	301
		tm1	$ _{340}$

At the Time 1 there is no allocation to any processors.

 $T_{non_ass()} = \{ tm_{7}, tm_{5}, tm_{9}, tm_{6}, tm_{8}, tm_{2}, tm_{4}, tm_{3}, tm_{1} \},$

 $T_{ass()} = \{ \emptyset \}.$

Now we first allocate first three task from $T_{non_ass()}$ i.e. tm_7 , tm_5 , tm_9 and assign them respectively

P1- tm_{7,}

P2- tm₅

P3- tm9

Now we eliminate them from $T_{non_ass()} = \{ tm_{6}, tm_{8}, tm_{2}, tm_{4}, tm_{3}, tm_{1} \}$, and add them in $T_{ass()} = \{ tm_{7}, tm_{5}, tm_{9} \}$;

We take a first task from the $T_{non_ass()}$ to allocate, calculate fused execution cost and fused communication cost to tasks for corresponding processor .For task tm₆:-

Processor	FEC (A)	FCC (B)	AFC (A+B)
P1	312.975	146	458.975
P2	412.02	152	564.02
P3	393.82	134	527.82

In this calculation we find AFC(1)_{6,7}= min {AFC()ai} from equation ,so we allocate tm₆ to Processor P₁. Now we eliminate tm₆ them from $T_{non_ass()}$ ={ tm₈, tm₂, tm₄, tm₃, tm₁}, and add them in $T_{ass()}$ ={ tm₇, tm₅, tm₉, tm₆};Similarly we repeat this process until we allocate all tasks to the respective processors. When we completely execute this process we get a task allocation table:-

Table-1			
Processor	List of allocated tasks		
P1	tm_7, tm_6, tm_4		
P2	tm_{5}, tm_{2}, tm_{1}		
P3	tm ₉ , tm ₈ , tm ₃		

Fig.1.2-Total Busy time of processorFig.1.1-Mean Service Rate and Throughput of the Processor

IV. Conclusion

In this paper we deal with efficient Mathematical and computational algorithm to identify the optimal method use the processor capacity and upgrade the preformation of the distributed system. In table 1-2 tasks are executing on processors simultaneously and maximum busy time of the system are 1221.916 times units and average throughput of the system0.005965 time's units. A comparison study has also been conducted with the algorithm developed by Singh et al. (9).

Table-3							
Processor	PEC	PCC	MRP	TRP	TOC		
P1	462.150	698	.00216	.00649	1160.150		
P2	580.608	692	.00172	.00517	1272.608		
P3	482.090	676	.00207	.00622	1158.090		
Comparison of the both electrithm is shown in table 4							

Comparison of the both algorithm is shown in table-4

Table-4

Present Methods				Yadav et al[9]			
Processor	EC	ITCC	TOC	EC	ITCC	TOC	
P1	475.02	658	1133.02	462.150	698	1160.150	
P2	492.912	690	1182.912	580.608	692	1272.608	
P3	545.916	676	1221.916	482.090	676	1158.090	

It concludes that compared results have been shown in table 4 and it is shows that the present algorithm gives better result.

Bibliography

- [1]. Introduction to distributed software enginnering . SHATZ, S/M.AND WANG, J.P. 2, s.l. : computer socity , 1987.
- [2]. Allocation task to processor in a Distributed system. **Baca, D.F.** s.l. : IEEE Trans.On Software Engineering , 1989, Vol. 15.
- [3]. A Task allocattion model for distributed computing system . Ma.P, Y.R,Lee, E.Y.S, & Tsuchiya,M. s.l. : Computers IEEE Trans., 1982, Vol. 1.
- [4]. Assignment Scheduling Communicating periodic tasks in distributed real time system. Peng.Dar-Tezen and K.G.Shin, Abdel, T.F.Zoher. s.l. : IEEE Trans. on software Engineering, 1997, Vol. 13, pp. 745-757.
- [5]. Reliability Evaluation of Distributed System Based on Failure Data Analysis, Yadav.P.K, Bhatia K,and Gulati Sagar. s.l. : International Journal of Computer Engineering, 2010, Vol. 2.
- [6]. An efficient algorithm for multiprocessor scheduling with dynamic reassignment . V.Kumar, M.P Singh and P.K Yadav. s.l. : national seminar on Theoretical Computer Science, 1996, Vol. 1.
- [7]. Optimal Execution Cost of Distributed system through Clustring . Khandelwal, Anju. 3, s.l. : International Journal of Engineering Science and Technology, March 2011, Vol. 3 .
- [8]. Task allocation for maximizing reliability of distributed systems: a simulated annealing approach . Hamam, Gamal Attiya and Yskandar. 10, s.l. : Journal of Parallel and Distributed Computing , 2006, Vol. 66.
- [9]. A task allocation algorithm for optimum utilization of processor in heterogeneous distrubiuted system. **P.K Yadav, Preet Pal** Singh, **P.Pradhan.** 1, s.l. : International Journal of Research review in Engineering Sciecne and Technology, march 2013, Vol. 2.
- [10]. Task allocation model for distributed system, G. Sagar, and A.K. Sarje. 9, s.l. : Int. J. system science, 1991, Vol. 22.
 [11]. "A fast algorithm for allocation task in distributed processing system," . Vinod Kumar, M.P. Singh, P.K. Yadav. s.l. : Annual
- convention of computer society of India, Hyderabad, 1995.
- [12]. Optimal utilization of processors in computer communication environment". Singh M.P, P.K.Yadav and Singh Jugmendra. s.l.: National Conference on Modern Development in Engineering & Applied Sciences (NCMDES-09) at College of Engineering & Applied Research, Feb 27-28,2009.