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Abstract: We present a very computationally light and fast approximation algorithm and then verify it with 

genetic algorithm and simulated annealing. We show that our algorithm is on par with GA and SA in terms of 

output produced while having a tightly bounded time complexity. Our algorithm works best when there is a 

strong positive correlation between the reliability of a component and its cost. We present two algorithms with 

the same essence. One of them is system cost bounded and the other is target reliability bounded. Our proposed 

algorithm works on a subsystem level redundancy instead of component level redundancy. 
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I. Introduction 
Machines, factory lines, vehicles etc have a large number of components. Each component can fail at 

any given time. Reliability of a component is defined to be the chance that a component will be working at a 

given time.  

When a component fails, the whole system may fail. The component then has to be replaced. This is 

called standby redundancy. In certain situations, say in satellites and probes, we cannot replace a component. 

Even in power systems and data servers, we cannot afford to bring the entire system down for maintenance. In 

those cases we use active redundancy. In active redundancy, a server always runs along with all the other 

servers, when a server fails, it immediately takes over. The model we use in our paper is called binary system 

reliability framework, which simply means that either the component is completely working or it has completely 

failed. There are no intermediate stages. 

In either case, we have to have some components or subsystems in our inventory to replace the failed 

components. The number of components we can have in our inventory can be limited by factors like budget or 

storage space. The redundancy allocation problem is thus finding a way to maximize reliability while 

minimizing the cost. This problem has been proved to be NP-Hard by MS Chern [15]. 

The graph of failure rate of a component over time is said to be bathtub shaped. In most of the 

component’s lifetime, the failure rate remains constant. Therefore we assume the reliability of the component to 

be constant. 

 
Figure 1: Bathtub shaped failure rate curve 

 

In order to find the total system reliability, we multiply the reliabilities of each subsystem in series. 

Here 𝑅𝑖  is the reliability of each subsystem in series. 

 

𝑅 =   𝑅𝑖

𝑛

𝑖=0
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 Redundancy at component level is better than redundancy at subsystem level[1] for active redundancy. 

However it is not true for standby redundancy. [2] In our paper we go for subsystem level redundancy.  

  

 
Figure 2: Series parallel redundancy allocation problem 

 

Each subsystem can have different types of components. In this paper we pre-calculate the reliability of 

all the different types of components and merge it into a single subsystem. Then we go for subsystem level 

redundancy. 

Say we install 𝑛𝑖  redundant spares for the subsystem 𝑟𝑖 . Then the reliability of this subsystem after 

installation of redundancies is given as follows. 

 

𝑅𝑖 = 1 − (1 −  𝑟𝑖)
𝑛 𝑖  

 

The n vector represents how many redundant spares of each subsystem we have to buy. The total cost 

of the system then becomes. 

 

𝑪 =  𝒄𝒊𝒏𝒊

𝒏

𝒊=𝟎

 

 

This problem can be solved using dynamic programming however both space complexity and 

computational complexity of the DP scheme grow with 𝑂( 𝑏𝑞
𝑄
𝑞=0 ). Where 𝑏𝑞  is the bound of the resource q. [3] 

In order to solve the problem faster with less auxiliary space, many scholars have tried using different 

meta- heuristics. Some scholars have experimented with fuzzy systems [8] and fruit fly optimization techniques 

[4]. Ant [7] and bee [18] colony optimization techniques can also be used to solve this problem. Artificial 

immune system algorithms, [9] improved surrogate constraint methods [10] and Tabu search [16] have been 

successfully implemented as well. [21] have taken into account, the variability data of reliability of components, 

gathered through field tests. [22] have used an electromagnetism like mechanism to solve the redundancy 

allocation problem. [23] used a Non-dominated Sorting Genetic Algorithm(NSGA II) after optimizing its 

operators rate by using Response Surface Methodology (RSM).  

In this paper we present a faster method which gives reasonably close results and requires no auxiliary 

space. 

 

II. Greedy Approaches 

1.1 Cost bounded approach 
We claim that the reliability of the system is being limited by the least reliable subsystem. Our claim is 

in accordance with the law of limiting factors. The concept of limiting factors is based on Liebig's Law of the 

Minimum, which states that growth is controlled not by the total amount of resources available, but by the 

scarcest resource. We represent this in mathematical terms using Theorem 1. 

Theorem 1: When we multiply n numbers between 0 and 1, the result is always lower than the lowest 

number. 

Proof: We prove it by induction. Let there be n numbers  

 
1

𝑘
=  

1

𝑘1
+ 

1

𝑘2
+ …  +  

1

𝑘𝑛
 

First, let us prove it for two numbers.  
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1

𝑘
=

1

𝑘1
+

1

𝑘2
 

𝑘 =
𝑘2

1 +
𝑘2
𝑘1

=  𝑘1  1 +
𝑘1

𝑘2
  

 

If 𝑘1  >  𝑘2then  
𝑘2

1+
𝑘2

𝑘1

<  𝑘  

Similarly we can show for 𝑘2  >  𝑘1  

Using induction, we get 
1

𝑘(𝑛+1)
=

1

𝑘(𝑛)
+

1

𝑘𝑛
+ 1 

𝑘(𝑛+1)  <  𝑚𝑖𝑛(𝑘(𝑛), 𝑘𝑛+1) 

𝑘(𝑛+1)  <  𝑚𝑖𝑛(𝑚𝑖𝑛(𝑘(𝑛−1), 𝑘𝑛), 𝑘𝑛+1) 

𝑘(𝑛+1)  <  𝑚𝑖𝑛(𝑘1 ,𝑘2 , . . . , 𝑘𝑛+1) 

 

Now, we establish the importance of this law in this context. To minimize the cost, we have to 

minimize the addition of the numbers in n multiplied by some constants. We maximize the reliability of R by 

increasing 𝑅𝑖  for all i. Increasing 𝑛𝑖  would increase 𝑅𝑖 . Since 𝑛𝑖  is dependent on 𝑅𝑖 , we can say that minimizing 

the summation of 𝑅𝑖  will result in minimizing the summation of 𝑛𝑖 .Where 𝑟𝑖  is a constant. 

 

Theorem 2: In order to maximize the multiplication of n numbers while keeping their summations to a 

minimum, the n numbers must be equal. 

Proof: This can be proved using Cauchy’s Mean Theorem 

Let there be two numbers x and y. We can write 
4𝑥𝑦 =  (𝑥 + 𝑦)2  –  (𝑥 − 𝑦)2 

 

We can see that xy is maximum when x-y is 0 i.e. x = y. 

Now we extend this proof to n numbers. Let there be two numbers a and b in n numbers such that a > 

M and b < M for a mean M of the n numbers. Using the above equation we can show that the product of a and b 

is maximum when a = b. Since we have chosen a and b arbitrarily, we can repeat the process until all numbers 

are equal to mean. 

In this problem, we are multiplying the reliabilities of each subsystem in series. To have the biggest 

increase in reliability, we increase the reliability of the least reliable subsystem.  

 

Theorem 3: If we were to maximize the product, we can have the biggest impact by increasing the 

lowest number in the chain. 

Proof: In Theorem 2 we proved that we have to minimize  𝑥 − 𝑦 2 for all x and y in n. Say x>y, now in 

order to minimize this equation we have to lower x or raise y. Lowering the reliability of a subsystem is not 

what we are going for, so instead of that, we will increase y to match x. The value of  𝑥 − 𝑦 2 grows 

quadratically as the difference increases. So, we can have the biggest impact on the geometric mean by 

increasing the reliability of the least reliable subsystem. 

The empirical proof of this claim can be verified by looking at Figure 3 and 4. When we increase the 

redundancy of the least reliable components, the reliability rapidly increases. After a certain point, the reliability 

plateaus out. 

In the cost bounded approach, we naively increase the redundancy of the least reliable subsystem by 

one unit. Then we recalculate the reliability of each subsystem including redundancies and the total reliability. 

This process is repeated until we have exhausted all our available resources. From this process we can see that 

the less reliable components will be bought more than the more reliable components. Therefore, if the cost of 

the less reliable components is less than the cost of more reliable components then the resources will be 

distributed effectively. So our algorithm must take an assumption that the cost and reliability is strongly 

correlated. 
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Figure 3: Reliability with respect to number of iterations when there is a strong positive correlation between 

reliability and cost 

 
Figure 4:  Reliability with respect to number of iterations when there is a strong negative correlation between 

reliability and cost 

 

Comparing figures 3 and 4 we can see that when there is a strong negative correlation, the algorithm 

stops faster as it has exhausted all its resources.  

The algorithm is not as fast as the target bounded approach as it consumes the resources linearly as 

demonstrated from figure 5.  

 
Figure 5: Increase of cost with iterations 

 

During every iteration, we calculate the reliability of the system. This takes time Θ(n). Then we find 

the component with lowest reliability, this also takes Θ(n). In the worst case, we have C iterations where C is the 

cost bound. Therefore the time complexity of this algorithm is O(cn). From empirical analysis (Figure 5) we can 

say that the convergence rate of this algorithm is super linear. 



Design and analysis of the redundancy allocation problem using a greedy technique 

DOI: 10.9790/0661-1805011119                                    www.iosrjournals.org                                          15 | Page 

 
Figure 6: Convergence rate of cost bounded algorithm 

 
1.2 Target reliability approach 

Sometimes, we are more interested in achieving a set level of confidence in terms of reliability rather 

than exhausting all the available resources. The following algorithm is for those cases.  

We fix a target reliability 𝑅𝑡 . It is the target reliability of the entire system. In Theorem 2 we have 

already proved that all the 𝑅𝑖  must be equal. Let us call it 𝑅𝑐 . 
 

𝑅𝑡  =   𝑅𝑖

𝑛

𝑖=0

 

𝑅𝑡 =  𝑅𝑐
𝑛  

𝑅𝑐 =   𝑅𝑡
𝑛  

 

We can now compute  𝑅𝑡
𝑛 , it is the target reliability of each subsystem. Let us call it k. When we 

equate it with 𝑅𝑖 , we get 
1 −  1 − 𝑟𝑖 

𝑛 𝑖 =  1 −  1 − 𝑘  
 1 − 𝑟𝑖 

𝑛 𝑖 =   1 − 𝑘  
Taking log on both sides 

 
𝑛𝑖  𝑙𝑛 (1 − 𝑟𝑖)  =  𝑙𝑛(1 − 𝑘) 

𝑛𝑖  =
𝑙𝑛 1 − 𝑘 

𝑙𝑛 1 − 𝑟𝑖 
 

  

Since ni is integer, we round it up. 

 

𝑛𝑖  =  𝑟𝑜𝑢𝑛𝑑  
𝑙𝑛 1 − 𝑘 

𝑙𝑛 1 − 𝑟𝑖 
  

 

This process can be thought as an approximation for integer programming where instead of integer 

programming, we do linear programming and just round the result. Since the cost has no upper bound in this 

case, the result is always within the solution space albeit it can be suboptimal, hence it is an approximation. [5] 

had implemented integer programming techniques to solve problems related with systems reliability design. 

This method is similar to using Lagrange Multipliers, implemented by [6].  

Just like the cost bounded approach, this works best when the reliability and cost are strongly 

correlated. Components with less reliability would be bought in far greater quantity then the ones with more 

reliability. In figure 7 and 8 we can see that the function converges much faster than the cost bounded approach. 

This algorithm also has a super linear rate of convergence. 
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Figure 7: Reliability vs. number of iterations. 

 

 
Figure 8: Convergence rate vs. iterations 

 

Calculating 𝑛𝑖  takes constant time. We have to repeat this process for each subsystem. Therefore the 

time complexity of this algorithm is Θ(n). 

 
III. Comparison With Meta-Heuristics 

1.3 Comparison with Simulated Annealing 

Simulated annealing is a probabilistic algorithm. It can be used in a wide variety of applications. The 

idea behind simulated annealing is derived from the crystallization of metals on cooling. As the crystals cool 

down, they align into a rigid formation. Simulated annealing interprets slow cooling as a slow decrease in the 

probability of accepting worse solutions as it explores the solution space. Accepting worse solutions is a 

fundamental property of meta-heuristics because it allows for a more extensive search for the optimal solution. 

the method was independently described by Scott Kirkpatrick, C. Daniel Gelatt and Mario P. Vecchi in 1983. 

[11] 

𝑃 𝑥𝑛+1 =  
1,  𝑓 𝑥𝑛+1 > 𝑓 𝑥𝑛 

e
− 

f xn  −f xn +1 
kT

 
,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

P is the probability of transfer to the new state 𝑥𝑛+1 . The function f is the fitness function of a variable 

x. T is temperature and k is the Boltzmann constant. In the context of redundancy allocation problem, x is the 

number of redundant components of each subsystem. The fitness function f is the reliability of the system for a 

given x. We initialize T to be a large arbitrary value and when we set k to be a small value, which is also 

arbitrary.  

The array of the number of components can be thought of a vector whose dot product with the cost 

vector must be less than or equal to the maximum available resources. In other words, the number of 

components vector is a direction is hyper dimensional space, scaled up to some constant k, such that the dot 

product of these vectors is less than equal or to the max cost. 
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𝑘 𝑛 . 𝑐  ≤  𝐶 
For the simulated annealing algorithm , we pick a random unit vector . Then we calculate the constant k 

using the above formula . We then scale n ̂ by k and round down each entry to the nearest integer . The result is a 

count vector whose dot product with the cost vector is less than the maximum allowed cost but very close to it. 

We can now evaluate the fitness of this vector and run it through the simulated annealing algorithm. 

 
Figure 9: Reliability vs. Iterations of SA, T = 100, k = .01 

 

From figure 10 we can empirically tell that our implementation of SA has a linear convergence. The 

answer given by this simulated annealing algorithm matches with the answers given by our algorithms usually 

up to three or four digit precision.  

 
Figure 10: SA has a linear convergence.. 

 

1.4 Comparison with Genetic Algorithm 

Genetic algorithm was originally introduced in 1975 by J. H. Holland [17]. Many researchers already 

have tried using GA on this problem with many creative approaches and achieved great results. [12] has used a 

combined neural network and genetic algorithm approach to solve the problem. [13] has studied a bi-objective 

RAP, which is related to a system of s independent k-out-of-n subsystems in series.  

In GA it is a common practice to use single uniform crossover operator. [14] has applied this method. 

However, experimentally we found that it does not perform as well as the method which we are going to 

describe. Since, we are thinking of the redundancy count as a vector, uniform crossover does not lead to a vector 

that resembles the parents in terms of phenotype.  

In figure 11 we have the numbers next to the green vectors indicating the number of components and 

the reliability of the system. The example is only for two dimensions but we can extend the idea to higher 

dimensions. We can see that all the vectors with the highest reliability are bunched together. Therefore in order 

to improve reliability, the child must closely resemble the parents. In our crossover function, we interpolate 

between the parents by a random factor t, in the hope that the child vector would be closer to the solution vector 

and therefore would have higher fitness than its parents. 

[19] had proposed the use of penalty functions in GA, however we do not use it. Instead we just 

normalize and rescale the vector as done in SA. The GA algorithm does not take into account the length of the 
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vector, only direction is taken into consideration. So it can never exceed the maximum available resources.  

 
Figure 11: The direction of the green vectors represents the number of redundancy of each subsystem 

1 and 2. The length represents reliability. The red curve is the first quadrant of a unit circle. Initially the 

reliability of component 1 and 2 are .7 and .75 respectively. The cost of each component is 2 and 3 respectively 

and the total available resource is 20.  

 
Figure 12: Reliability vs. Iterations graph of GA 

 

In our mutation function, we apply a random force to each component of the vector in the hope of 

getting out of any local minima.  

 
Figure 13: Convergence vs. Iterations of GA. Linear convergence is exhibited for most of the iterations. 
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IV. Conclusion 
This paper mainly deals with the implementation of redundancy allocation using greedy technique and 

based on the graphical representations, it reveals the fact that convergence criteria is obtained as a comparative 

study with genetic algorithm and simulated annealing. 

The cost bounded approach increases the redundancy one unit at a time. This is rather inefficient when 

maximum resource is large and cost of each component is rather small. A more intelligent approach can be 

devised to solve this problem more efficiently. The source code used for this research can be found on Github. 

(https://goo.gl/6DZcdG) 
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