
IOSR Journal of Computer Engineering (IOSR-JCE)
e-ISSN: 2278-0661,p-ISSN: 2278-8727, Volume 18, Issue 5, Ver. IV (Sep. - Oct. 2016), PP 60-73
www.iosrjournals.org

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 60 | Page

Process performance model for predicting Delivered Defect

Density in a software scrum project

Srijith Sreenivasan .ManimaranSundaram
Research Scholar at Anna University, Chennai, India

Abstract: Agile scrum projects are gaining popularity for software development and delivery, due to its inherent

attributes of flexibility in execution and quicker time to market. However, the critics of Agile have been raising

questions on the predictability of success of Agile execution as the emphasis given to quantitative management

using predictive techniques for an Agile project may not be to the extent of large mission critical projects which

uses in-process leading indicators to predict outcomes. One possible solution to this challenge is to use the best

practices from industry adopted models like the Capability Maturity Model Integration® for planning and

managing Agile software delivery. In this paper, we present a study were a prediction model was developed for

use in Agile projects for systematic in-process monitoring and decision making. The purpose of this paper is to

propose a predictive model as a driver for continuous improvement of Delivered Defect Density in the context of

a Scrum project.Our findings show that using the prediction model, the success of Agile project could be

forecasted and controlled during its planning and execution phases as against waiting for the final release to

determine success of delivery.

Keywords: process performancemodel;agile;software development; software metrics; scrum

I. Introduction
In today‟s rapidly changing business environment, agile projects provide relevant solutions by

demonstrating adaptability in execution. In that sense, agile has become highly successful and has been adopted

by several organizations as a way of executing projects (Cohn 2010). One of the areas where Agileprojectscan

further improve is by gaining quantitative predictability in operations at the same time being flexible in

execution. Though there are several approaches suggested within the agile framework itself for scaling up agile

operations and handling complexities, managing complex software development by way of having predictable

indicators is an opportunity which Agile projects can explore. It is in this context that established models like

Capability Maturity Model Integration for Development (CMMI
®
) are extremely useful for managing software

development in a methodical way (McMahon 2011). The higher maturity levels (Level 4 and Level 5) of CMMI

provides a quantitative approach to monitor and control the project using prediction models. Such prediction

models is an aid for Project Managers in predicting the outcomes of their project using in-process factors which

are expressed in quantitative terms.

In this paper, a study is performed to predict the Delivered Defect Density (DDD) of an agile project,

using a process performance model which is developed based on historical information of the organization. The

model is developed based on the guidelines available in the Capability Maturity Model Integration (CMMI),

especially on the process areas of Organizational Process Performance and Quantitative Project Management.

The key contributions of this paper are as follows.

 proposal of a model for Agile scrum projects

 evaluation of a model for predicting and improving delivered defect density in SCRUM projects

The paper starts with defining the background and context of the study, research methodology and

study of existing literature in this area. A brief description of the major knowledge areas considered in the study

namely Agile, CMMI and High Maturity practices in CMMI is then presented. An introduction on measures,

metrics and prediction models is also provided. The development of the Agile Prediction Model and the

application of the model Agile SCRUM projects is addressed as the main theme of the paper which concludes

with the advantages, shortcomings and limitations of the model developed.

1. Background of the study

In organizations where quality of software is a primary goal for the software projects, it is useful to

measure and observe Delivered Defect Density as a lagging indicator signifying the quality of developed

software. Though this is a good metric to indicate the goodness of the delivered software, the metric lacks the

ability to be controlled, as it is an outcome of the software development process and not an in-process metric. In

this context, the need for in-process or leading indicators which will help practitioners get visibility on the

outcome is important. In this paper, the processes and sub-processes leading to Delivered Defect Density is

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 61 | Page

studied to arrive at the in-process factors having an impact on the outcome metric. The study aims to develop a

prediction model using these factors to predict the Delivered Defect Density.

II. Research Methodology
Case study method is used as the methodology for this research. The reason for selecting this method

for developing a prediction model is as per the points put forward by Runeson and Höst(2009). As per their

study, software engineering research attempts to determine the development and maintenance of software done

by software engineers and project managers.They concluded that research questions in software engineering are

suitable for case study research, which is especially true for this study as well, since the factors considered

includes people, process and technology aspects.

This study was done in the Global In-house Information Technology partner of a major multinational

bank in Europe. This organization has development and maintenance projects done in the financial domain,

many of which are critical in nature due to the requirements of stringent quality. Hence Delivered Defect

Density is a critical measure used by the Project Managers of this organization to determine the quality of

software developed and delivered.

Following are the major steps followed in this study.

(i) Case study design:The research objective definition and execution of the case study was planned at this

stage.

(ii) Preparation for data collection: In this stage, steps for data collection was arrived at using a data collection

plan.

(iii) Collecting evidence: Data was collected based on the data collection plan.

(iv) Analysis of collected data: Data was analyzed and modelled at this stage.

(v) Reporting: Reporting of the results along with a demonstration of usage of the model in an actual project

was done at this stage.

2.1 Research Questions

The research questions considered for this study are:

RQ1: What are the processes and sub-process which have a relationship to Delivered Defect Density?

RQ2: What are the factors influencing Delivered Defect Density in this organization?

RQ3: What is the result of using prediction model for Delivered Defect Density in an Agile SCRUM project?

2.2 Data collection and analysis procedures

Data required for the study was collected from the previous projects executed in the organization. A

data collection plan was developed for data collection and used for gathering data on the selected sub-process

metrics. The operational definition of the metrics was done and used while collecting data to ensure consistency

and correctness of the collected data.

Analysis of the data was performed using correlation and regression. Multiple Linear Regression

technique was used for modelling and to arrive at the prediction equation.

2.3 Threats to validity

The factors that may have an impact on the validity of this study are presented in this section. These

factors are organized as Construct Validity, Internal Validity and External Validity.

2.4 Construct Validity

Though an operational definition exists for each of metrics that were collected, it can be subject to

measurement errors. This is especially true since the base measures are collected by Project Managers based on

their understanding of the measure. This risk was alleviated by training all Project Managers in data collection

and providing an overview on the operational definition of the metric and its intent.

2.5 Internal Validity

The approach used for this study relies on the causal relationship of the factors to Delivered Defect

Density. And such relationship is proved using data empirically. However, there could be other factors also,

some of which are non-controllable in nature, which could have an impact on the dependent variable used. This

threat was overcome by determining the regression co-efficient, R-sq adj. In this study, the R-sqadj value of the

equation was around 91%, indicating that 91% of the variation of the outcome can be explained by the factors

considered for the study.

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 62 | Page

2.6 External Validity

This study is performed using the data collected from one organization only. The nature and context of

this organization can have an impact on the output of this study. However, it was determined that the process

followed in this organization is the standard Agile SCRUM execution process without much deviation and

tailoring. The organization is also appraised at the Maturity Level 5 of the CMMIfor Development model,

indicating that it is benchmarked among the other major Software Development organizations in the Industry.

Hence it was determined that this organization can be a typical research specimen where a study on the

applicability of Agile and application of CMMI High Maturity prediction model could be carried out.

III. Review of existing literature
In this section, the related work in this field and research gap is addressed. The context of this study

with respect to the knowledge gap is briefly addressed.

3.1 Related work

Abrahamsson et al (2007) studied the effort prediction in iterative software development. Their

objective was to arrive at a more accurate method of effort estimation in the eXtreme Programming

environment, where traditional methods of estimation may not be very accurate. They proposed an incremental

model that can be developed without entirely depending on historic data.

Prediction of software defects in various lifecycle models including iterative development is discussed

by Fenton et al (2007). They used Bayesian Network to study about software project as a whole and the balance

between time, resources and quality. They studied that the factors used for prediction of outcomes in iterative

lifecycle, covering both the assessment of process quality and the product quality.

Hearty et al (2009) developed a model for predicting project velocity in eXtreme Programming using

Bayesian Belief Network model. The model was validated in an industrial context by the researchers and could

demonstrate results. The outcome of their model was the level of functionality delivered over time, which was

predicted using factors from early lifecycle stages and knowledge about the presence of an onsite customer. This

model used the data from early stages of a project to refine the predictive results in later stages.

A study of software metrics for assessing the phases of an Agile project was done by Concas et al

(2012). They modelled the agile software development practices using Java by considering the various agile

practices to the outcome of object oriented metrics. Their conclusion was that “good” agile practices are related

to “better” values of the object oriented metrics.Eg: when agile practices such as pair programming, test driven

development and refactoring are used, the quality metrics shows improvement; when these practices are

discontinued, the metrics shows significant worsening. They used case study method for analysis and

conclusion.

Li and Leung (2014) developed a prediction model to study the error proneness of agile object oriented

system using Bayesian techniques. They proposed Bayesian Network as a technique to predict fault proneness

compared to other modelling techniques using study of static metrics. As per their study, Bayesian Networks

yielded better predictability when compared to Logistic Regression and Naïve Bayes.

Singh and Verma (2014) developed a fault prediction model using cluster based classification. They

argued that using a cluster based approach increases the probability of defect detection which results in more

reliable and test effective software. They demonstrated an 83% probability of detection compared with standard

methods of defect prediction.

The performance of defect prediction in rapidly evolving software was studied by Cavezza et al (2015).

The prediction accuracy on whether or not an attempted commit is going to introduce a bug was studied in a

high commit frequency context, depicting rapid evolution of software. They concluded that a dynamic approach

to prediction works better than a static prediction model for evolving software. Their study proved useful in

development scenarios having shorter release cycles and higher code variability.

A generalized software reliability model for predicting release time for open source software was

proposed by Washizaki et al (2015). They recognized that though there is sufficient reliability in Agile owing to

shorter release cycles and incremental development, there is a significant challenge on predicting the release

date of target software. The model was developed using an ito-type stochastic differential equation extended

from nonlinear differential equation. They also evaluated the prediction accuracy using Error Rate, as a function

of Predicted and Actual release day. The study reported Error Rates which are very less, hence proving the

accuracy of prediction.

3.2 Research Gap

Though there are similar papers which studied the prediction models in Agile as explained in the

previous section, a study on predicting Delivered Defect Density using process performance model concept of

CMMI in an Agile SCRUM project is not performed and published. The factors considered for the prediction of

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 63 | Page

Delivered Defect Density, as a combination is not considered for prediction of outcome for agile software

development projects. The scope of this study is limited to this area and is very specific in developing such

model and determiningits usage in an actual industrial project.

IV. Agile Software Development
The word „agile‟ means ability to move quickly and easily. Agile found its place in Software development when

traditional approaches for software development failed to find answers to some of the most pertinent challenges

regarding software development such asSalo et al (2007):

 Lack of ability to handle changes effectively,

 Lack of ability to handle uncertainties,

 Lack of visibility on the working software till the end of software development.

Agile understands and recognizes that Software development is a human intensive activity, which can

only be considered as an overall progression of activities to achieve an ultimate goal (Sutherland 2013). The

four guiding principles of Agile are the following, which are commonly referred to as the agile manifesto.

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

One of the most popular approaches in Agile is the SCRUM methodology. SCRUM is not just a

process or a technique, rather it is a framework within which various processes and techniques can be used for

building working software. The SCRUM is an iterative and incremental framework for software development

which structures development in cycles called Sprints which are time-boxed. This means that they end on a

specific date whether or not the work is completed. The sprints are executed by people who have got a definite

role to play. Some of the expected roles in Scrum are the Scrum Master, Product Owner and the Scrum Team.

The input for Scrum team is the product backlog which is a list of items or features for the Software to

be developed. This list which is prioritized by Product Owner according to business importance, are broken

down into small chunks of work by the Scrum team, further to which each of the team member signs up for their

work. Sprints are executed in this fashion for the defined time boxes. During sprint execution, every day the

team does a Scrum meeting in which the following three questions are answered.

 What did I accomplish yesterday,

 What will I be working on today,

 Are there any obstacles on my way

At the end of the sprint, two meetings are conducted called the Sprint Review meeting and Sprint

retrospective meeting. In Sprint review meeting, the completed work is demonstrated to relevant stakeholders.

In Spring Retrospective meeting the team inspects their completed sprint and adapts their performance for future

sprints. The Scrum project gets completed, once all the planned sprints are executed.

Cohen and Costa (2003) observed that agile methods are actually a collection of different techniques

(or practices) that share the same values and basic principles of traditional development. It is the focus and

values behind agile methods that differentiate them from moretraditional methods. The application of agile

methods with CMMI is studied by Silva et al (2015). They noted that agile methodologies have been used by

companies to reduce their efforts to reach levels 2 and 3 of CMMI, and even to obtain level 5. They observed

benefits such as improvements in organizational aspect, greater team and customer satisfaction, further

integration, cost reduction, process assimilation, increasing productivity and reducing defects in their study.

They argued that the feasibility of using CMMI together with the agile development is manifested on both sides.

The Capability Maturity Model Integration®

CMMI, which is published by the Software Engineering Institute, part of Carnegie Mellon University

provides a landscape for Organizations to move through a progressive and well defined plateaus known as

Maturity levels. The model is a collection of best practices Organized systematically into knowledge groups

known as Process Areas. Each maturity level with the exception of Maturity level 1 has many Process Areas

which needs to be complied with for attaining the Maturity Level (CMMI Product Team2010).

Level 1 of the CMMI model is an ad-hoc level where there are no processes established. Success of

projects in a Level 1 organization largely depends on individual heroics, but is not predictable and sustainable.

Maturity Level 2 of CMMI, otherwise known as Managed level is one in which basic Project Management

processes are in place. Measurements are done at defined intervals and used for in-process course correction. In

Maturity Level 3 of the model, a standard way of executing projects is established across the Organization. In

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 64 | Page

this level, the Organization is more proactive and Engineering processes protected by solid project management

are effectively implemented. Level 4 of CMMI is also known as quantitatively managed level, indicating that

the focus of Organization at this level is quantitative and statistical thinking. Achieving the goals of projects and

in turn that of the organization are done through usage of quantitative process performance models, commonly

known as Prediction Models. Maturity Level 5 is an Optimizing level in which the focus shifts to constant

improvements and innovations directed towards business goals of the Organization. Improvement of the process

is inherently part of everybody‟s role in the process, resulting in a cycle of continual improvement.

There are two representations in CMMI namely staged and continuous. The staged representation

enables organizations to achieve maturity levels, whereas continuous representation enables organizations to

achieve capability levels. In staged representation, organizations are expected to follow an evolutionary

approach to process improvement, moving through each level incrementally. In continuous representation,

organizations can select which process areas to improve upon, and decide to which capability level this

improvement has to be done. For the purpose of this study, the staged representation of CMMI is considered, as

the study is focused on some of the requirements of maturity levels 4 and 5, which corresponds to the staged

representation. A brief expectation of maturity levels 4 and 5 of the staged representation is explained in the

following section.

High Maturity practices in CMMI

The practices in Level 4 and 5 of CMMI model are commonly referred to as High Maturity practices.

There is a reason for combining these two levels and using a single word to signify its commonality. Primarily,

the practices of the four Process Areas in these two maturity levels are highly inter-related which makes it

logical for Organizations to implement them in unison. Secondly, the maturity level 4 and 5 of the model when

implemented consistently, results in a system of prediction, causal analysis and continuous improvement which

has to operate seamlessly to obtain desired results. In a High Maturity system, organizations are expected to

periodically review business objectives and maintain quality and process performance objectives in accordance

with the business objectives. Statistical and other quantitative techniques (including process performance

baselines and models) are used to understand process performance and target areas for improvement that would

enable achievement of the objectives (CMMI Product team2010).

There are four process areas in maturity levels 4 and 5 together. These are Organizational Process

Performance, Quantitative Project Management, Causal Analysis and Resolution and Organizational

Performance Management. The purpose of Organizational Process Performance (OPP) is to define an

environment for establishing quantitative practices in the organization. The key concepts of this process area are

Process Performance Baselines and Process Performance Models.The purpose of Quantitative Project

Management (QPM) process area is to define quantitative goals at a project level and to manage projects

quantitatively using models and baselines. The Causal Analysis and Resolution (CAR) process area helps the

organization to identify the causes of defects, problems and surprise positive outcomes and to initiate corrective

actions on the identified causes. The Organizational Performance Management (OPM) process area defines

requirements to identify incremental and innovative improvements focused on the business objectives of the

organization.

When the requirements of these four process areas are implemented in an organization, the result is a

quantitative environment where organizations and projects strive for continuous improvement through the usage

of quantitative information for baselining, predictive modelling and usage of prediction models for in-process

control of project execution.

The quest for agile teams in achieving CMMI Maturity Level 5 is studied by Cohan and Glazer (2009).

Sutherland and Jakobsen (2008) studied the combined use of Scrum and CMMI. They observed that CMMI and

Scrum can be successfully mixed. The mix results in significantly improved performance while maintaining

compliance to CMMI Level 5 as compared to performance with either CMMI or Scrum alone.

Need for measures, metrics and prediction models

A good quality management system provides warning signs to Project Managers early in the lifecycle

of the project and not only towards the end. For this to happen, it is essential to predict outcomes using certain

factors during the development phase of the project, so that controlling these factors during project execution

will ensure that the final outcome of software development is successful. If these predictions can be made early

in the lifecycle, then there is opportunity for Project Managers to make real time decisions which will help in

suitable course corrections (Kan2003).

One of the basic problems of software industry is not being able to make a realistic commitment on the

effort, schedule and quality of a software project or product (Jalote2005). A probable reason for this is because

of the inability of estimation and forecasting techniques to accurately capture the complexities during

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 65 | Page

development processes. Moreover, the lack of reliable past data and metrics leads to poor quality estimates. This

results in unreasonable expectations, failed commitments and thereby customer and team dissatisfaction.

Measurements and Metrics contribute in determining the range of expected results that can be achieved

by following organization‟s standard processes. The process capability thus achieved is used by software

projects to establish and revise their process performance goals and to analyze the performance of the projects‟

defined software processes. They also represent the health of a project with respect to the organization‟s

standards.

Major objectives of the metrics are as follows: (Fenton 1997)

 To understand the quality of the product better

 To determine the effectiveness of the software process

 To improve the estimation quality

 To initiate timely corrective actions based on prediction of efforts, schedule and quality

Metrics can be broadly classified as leading and lagging indicators (Regan 2002). Lagging indicators

signify the outcome of a process, whereas leading indicators helps in in-process control of the process, which

will in-turn influence the outcome. Such an approach of using leading indicators to control and predict lagging

indicators is achieved through prediction models.

The usefulness of a model depends on the accuracy of its results. One the determinants of quality of a

model is its empirical validity (Kan2003). Empirical validity refers to the situations in which the predictive

validity and usefulness of the model is supported by organizational empirical data. The empirical validity will

vary drastically across organizations, lifecycle methods and types of projects. Hence it is important for an

organization to develop models based on historical data derived from its historical projects.Inorder to test the

usefulness of the model proposed, it was validated with an actual industrial project.

The following sections of this paper explains how a prediction model was developed using historical

data of an Organization for Agile projects and how it was used in a project to make useful decisions for mid-

course corrections and Quantitative Project Management.

V. Development of Agile prediction model
Process performance models or prediction models are used to estimate or predict the value of a process

performance outcome from the current and historical values of process and product measurements. These

process performance models typically use process and product measurement data collected throughout the

lifecycle of the project to predict the probability of achieving objectives that otherwise cannot be measured until

later in the project's life. The approach which we followed for developing a prediction model consisted of below

steps.

(i) High level process mapping of Agile project execution

(ii) Development of Metrics Architecture

(iii) Characterization of processes and sub-processes

(iv) Determination of logical relationship of factors

(v) Operational Definition of metrics

(vi) Statistical validation of relationship

(vii) Conversion to probabilistic model

5.1 High level process mapping of agile project execution

The first activity performed to develop a model was to depict the execution of agile process using a

Process map as shown below. Such a process map helped in identifying the processes and sub-processes

involved in the agile project. Knowledge of the processes and sub-processes was used to identify the influencing

factors at a sub-process level, which will have an impact on the goals of the project.

Fig 1 Process and sub-processes of Agile project execution

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 66 | Page

5.2 Development of Metrics Architecture

The goals which are important at a project level were derived from the organizational business

objectives. The processes and sub-processes identified in the previous step were related to the relevant project

level objectives. This representation of the relationship between the organizational business objectives, project

level objectives, processes and sub-processes was called as a Metrics Architecture, since it provided a

conceptual view of the relationship between variables at different levels.

In-order to develop the Metrics Architecture, the business objective of the organization was studied.

The business objective was obtained from the organizational vision, which provided a direction for Project

Managers to steer their projects. In this case, the business objective identified was related to customer

satisfaction, which stated “Achieve Customer Satisfaction through consistent delivery of good quality software,

on-time, every time”.

From this high level objective, two lower level goals were identified, one representing quality and

another representing process performance. Following the direction provided by the business objective, the

quality goal identified was Delivered Defect Density (DDD). This indicated the extent of delivered to the

customer after final release. The second goal that was derived representing process performance was Schedule

Variance (SV). This goal indicated the extent of delay in calendar days for meeting customer release

commitments. Quantitative targets were then set for both these objectives, as defined in Table 1.

Table 1 Quantitative targets for agile project

The quantitative goals defined in Table 1 were arrived at based on the current performance of the

organization, which was studied quantitatively using a process performance baseline.The data considered for

this study was from the historical projects in the organization executed for the last several months. CMMI

defines process performance baseline as a documented characterization of process performance, which can

include central tendency and variation. It goes on to mention that a process performance baseline can be used as

a benchmark for comparing actual process performance against expected process performance. The mean and

standard deviation of process performance of Delivered Defect Density and Schedule Variance, was observed to

be as in Table 2.

Table 2 Process performance baselines

Based on the process performance baselines for DDD and SV, it was inferred by the Organizational

management that a goal of less than 0.5 defects per 100 story points and less than 5% is achievable by the

projects following similar processes. However, the projects could tailor these defined goals with justifiable

rationale and approvals from Senior Management as needed.

Once the goals were defined, the processes and sub-processes which has an impact on the quality and

process performance objectives were identified and represented. The purpose is to identify only those relevant

and critical processes and sub-process which will have an influence on the project objective and focus on them.

Such a representation aided in the next activity of identifying measures corresponding to each of the process and

sub-process.

The size measurement used in agile projects is Story Points. Though story points have several faults as

observed by Buglione and Abran (2007), story points will give a relative understanding of the size of a feature

or user story with respect to the other features of user stories in the application. Hence within the scope of the

user stories in an application, story points will serve the purpose of identifying the relative size of features with

an acceptable level of accuracy (Cohn 2005). However, when used across projects and applications for the

purpose of comparing and making decisions, functional measures such as IFPUG or COSMIC Function Points

are considered to be better sizing options (Nasir 2006).

Metric Goal

Delivered Defect Density Less than 0.5 defects per 100 Story points

Schedule Variance Less than 5%

Metric Mean Standard Deviation

Delivered Defect Density 0.47 defects per 100 story points 0.02 defects per 100 story points

Schedule Variance 3.56% 0.72%

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 67 | Page

Fig 2 Metrics Architecture to identify sub-processes

5.3 Characterization of processes and sub-processes

Having identified the processes and sub-processes for agile development, the next step performed was

to characterize each of the processes and sub-processes using suitable measures. The measures were chosen

after careful analysis as to really represent the process and sub-process from an efficiency and effectiveness

point of view.

Table 2 Sub-process metrics mapping based on High level processes

Process Subprocess Metrics

Release Planning Product Backlog prioritization Release stability Index

 Product Backlog management Story DD

Sprint Planning Sprint prioritization Sprint Stability Index

 Sprint backlog management Sprint Effort Variance

Sprint Execution Requirements Analysis Story Points Coverage, Defects per story

 Design evolution Design complexity

 Code generation Cyclomatic Complexity, Code Quality, Other OO metrics

 Testing RTF, % Test passing, Test productivity

Sprint Management Sprint review Team Velocity, Running Tested Features, Average

Completion Rate

 Sprint monitoring Sprint burndown index, Earned Value

 Sprint retrospective Sprint Reliability, User satisfaction Index, Delivered
Defect density

Release

Management

Release monitoring Release burndown index, Release Schedule Variance,

SPI, Skill Index

 Release closure Hard value delivered, Earned Business Value

5.4 Determination of logical relationship of factors

The relationship between the Business Objectives, Quality Objectives, process and sub-processes were

then ascertained logically. A review by Subject Matter Experts (SMEs) was conducted to study and verify the

logical relationship. Purpose of this review was to ensure that all the measures identified for quantitative

modeling was relevant to the processes and sub-processes, and in turn they have a significant influence of the

quality and business objectives of the organization.

Two types of relationship were studied between variables.

 Direct relationship,

 Inverse relationship.

It was observed that some of the sub-process metrics identified had a direct influence on the

corresponding quality objective, while others were inversely related with the Quality Objective. The below table

summarizes the logical relationship and its direction between the sub-process metrics and corresponding Quality

Objective.

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 68 | Page

Table 3 Logical relationship between Quality objective and sub-process metrics

5.5 Operational definition of metrics

The metrics that were selected for statistical validation had to be understood and defined further, so that

there is consistency in data analysis and interpretation. For this purpose, the operational definition of these

metrics were defined using a Metrics Definition Plan as in Table 4 below.

Table 4 Operational definition of metrics

5.6 Statistical validation of relationship

Once the logical relationship between the variables were determined, the next step was to model and

validate this relationship statistically. The purpose was to prove the existence of such a relationship using

quantitative data, so that decisions could be taken on relevant factors impacting the goals rather than relying on

assumptions and logical inference alone. Historical data for these measures considered were collected from

closed projects over a period of past several years and this was organized as a Measurement Repository. The

data was validated for relevance and quality prior to use for modelling.

Inorder to develop a model, dependent and independent variables had to be identified. Independent

variables are considered as x‟s influencing the depending variable Y. In this case, DDD is the dependent

variable Y, which is influenced by the x-factors which are Sprint DD, Design Complexity, Code Quality, RTF

and Skill Index.

Once the variables are determined, suitable statistical technique for modelling had to be selected. This

was done based on the table below (Stoddard et al. 2009).

Table 5 Selection of modelling technique

Sub-process Metric Operational Definition Unit of

Measurement

Data Source Level of Control

Story DD Number of peer review
defects per story point of User

Stories

Number of Defects Review Tracker Statistical

Design Complexity Average Complexity of
design modules on a scale of

1 to 5

Index Agile Tracking
tool

Statistical

Code Quality % of rule violations in static
code analyzers

Percentage Code Analyzer Statistical

RTF % of features in a software

which passes all their

acceptance test cases, in a
given instance

Percentage Test Tracker Statistical

Skill Index Average primary skill rating

on a scale of 1 to 5

Index Skill Tracker Operational

 Continuous (Y) Discrete (Y)

D
is

cr
et

e

(x
)

ANOVA
Dummy Variable Regression

Chi-Square
Logistic Regression

C
o
n

ti
n
u

o
u

s
(x

)

Correlation

Linear Regression

Logistic Regression

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 69 | Page

Since both the x‟s and Y are on a continuous scale, Multiple Linear Regression (MLR) was selected as a

technique for statistical modelling. MLR is an approach to modeling the relationship between a dependent

variable Y and one or more explanatory variables denoted as x.

The equation for MLR was modelled as below.

Delivered Defect Density = f(Story DD, Design Complexity, Code Quality, RTF, Skill Index)

Prior to performing regression, the relationship of each of the individual sub-process metric on Delivered Defect

Density was studied independently using Scatter plots and Correlation. Once the relationships were determined

independently, regression analysis was performed. The output of the regression was obtained as follows.

Delivered Defect Density = 0.756 + 0.0150 Story DD + 0.0132 Design Complexity - 0.00101 Code Quality -

0.00160 RTF - 0.00221 Skill Index

 The above equation proved that Delivered Defect Density has a direct or positive relationship with

Design Complexity and inverse or negative relationship with Story DD, Code Quality, RTF and Skill Index.

Certain parameters of Regression were studied to determine the goodness of the above equation. These

were ANOVA p-value, R-sq adjusted value, Variance Inflation Factor, p-value of factors and normality of

residuals. The resulting interpretation is summarized in the below table.

Table 6 Process performance baselines for sub-process metrics

This information helped the practitioners to precisely identify what are the contributing factors which

will help them to achieve Delivered Defect Density. This implies that, from a Project Management perspective,

inorder to reduce Delivered Defect Density, practitioners shall work towards reducing Design Complexity and

increase Story DD, Code Quality, RTF and Skill Index. These sub-process metrics, also known as leading

indicators are the ones which could be controlled during the course of execution of project.

5.7 Conversion to probabilistic model

In order to find out the probability that developed model will be accurate, Monte Carlo simulation

technique was used. Monte Carlo methods are a class of computational algorithms that rely on repeated random

sampling to compute their results. The input required for this simulation technique are the values of independent

variables (x‟s), corresponding dependent variable (Y) and the relationship connecting the two.

The first step in developing the probabilistic model was to define assumptions on the distribution

patterns of x-variables. A detailed study of the x-variables was done to understand its type of distribution based

on historical data. A process performance baseline was created for each x-variable to understand its type and

nature of distribution. CMMI defines Process Performance baseline as a documented characterization of process

performance, which can include central tendency and variation.

The process performance baselines defined for the x-variables are as in Table 7.

Table 7 Process performance baselines for sub-process metrics

Table7 hasparameters defined as assumptions in the Monte-Carlo simulation. The mean and standard

deviation of the x-variables were modelled and assumed as inputs. The distribution type was defined as Normal

for all the x-variables. Using this information and the regression equation, a relationship was drawn between the

Regression Analytic output Observed Value Inference

ANOVA p-value 0.01 Since the ANOVA p-value is less than 0.05, the
Regression test is significant at 95% confidence

interval

R-sq adjusted 91.3% This implies that the factors considered explains
more than 91% of the variation in output, i.e DDD.

Variance Inflation Factor (VIF) Less than 5 A high value of VIFfor factors would indicate that

the factors are inter-related to each other. In this

case, since the VIF is less than 5, there is no
relationship among factors, and each factor

influences the output independently.

p-value of coefficients Less than 0.05 Since the p-value is less than 0.05, the factors are
significant to influence the output, at 95%

confidence interval.

A-D testfor residuals p>0.05 The residuals of the regression is normally

distributed

Variable Mean Standard Deviation Distribution Type

Story DD 0.25 0.09 Normal

Design Complexity 3.06 0.702 Normal

Code Quality 81.78 5.15 Normal

RTF 76.97 3.64 Normal

Skill Index 3.48 0.93 Normal

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 70 | Page

x-variables and Y, which is Delivered Defect Density. After this, the Delivered Defect Density was defined as

output and a simulation run was performed with 10000 trials. The resultant output is as follows.

Table 8 Simulation output for Delivered Defect Density

The certainty value of Delivered Defect Density to meet a goal of less than 0.6 defects per 100 Story

points as observed from the simulation result is 64.9%. This implied that, there is a 35.1% risk of not meeting

the project goal of Delivered Defect Density, if the Agile project is following the same mean and standard

variation performance of sub-process metrics as per the Organizational baselines. A better performance of sub-

process metrics was required to meet the project goal with higher level of certainty. Actions were warranted

during the project execution phase to improve the sub-process metrics performance.

VI. Usage of the prediction model during project execution
The prediction model developed out of the statistically significant metrics architecture was used in the

Agile project during planning and execution phases. An agile project demands flexibility, transparency and

improved efficiency. Better predictability of operations will help Scrum team to achieve this more

systematically.

Fig. 3 In-process monitoring during execution of Agile project using the prediction model

During the planning stage of the Agile project, the Scrum team had to determine the optimum planning

parameters to be used to run the project. Among the various parameters to be considered while planning, the

following were considered as critical sub-process metrics to be given priority while planning. This was based on

the derivation from statistically validated Metrics Architecture.

 Skill Index of the SCRUM Team

 Story Defect Densities

 Design Complexity

 Code Quality

 Running Tested Features

By giving priority to critical factors over other parameters gave Scrum team better focus on what is

more important and significant to achieve the overall objective of the Scrum project, namely reducing Delivered

defect density and reducing Schedule Variance as per overall release plan.

Table 9 What-if analysis based on planned and actual values during sprint execution

Name Maximum Minimum Mean Std. Dev. Certainty @

0.6

Delivered Defect Density 0.64 0.56 0.59 0.012 64.9%

Subprocess Metric Planned
value

Actual value
(x) – Sprint 1

Actual value (x) –
Sprint 2

Actual value (x) –
Sprint 3

Actual value (x)
– Sprint 4

Story DD 0.25 0.43 0.22 0.21 0.18

Design Complexity 3.06 3.01 3.2 2.9 2.7

Code Quality 81.78 71.2 80.2 83.6 82.3

RTF 76.97 73.5 77.7 75.4 81.2

Skill Index 3.48 3.1 3.21 3.35 3.35

Predicted Delivered Defect Density 0.59 0.61 0.59 0.58 0.57

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 71 | Page

Out of the two goals, Delivered Defect Density was considered more important as the product quality

was critical to client. During the planning phase, the SCRUM Master wanted to know whether he would be able

to achieve the goals on Delivered Defect Density, considering the resources available. This was done by using

the Organizational baseline values for the planning parameters in the prediction model as shown in Table 7.

Further to this after each sprint, the actual values of the sub-process metrics were substituted in the prediction

model equation to determine the predicted value of Delivered Defect Density. The result of this what-if analysis

is summarized in Table 7 below.

Planning and in-process monitoring was performed before and after each sprint to ensure that the

SCRUM Master has an ongoing control on the overall execution of the project. The actions taken for each sprint

is explained below.

6.1 Planning phase

The Scrum Team had a four sprint project to be executed. During the planning phase, the Scrum Master

set goals for the project. The overall goal for the project was set for Delivered Defect Density, which was a

lagging indicator. Achieving this goal indicated the success of the Scrum project. However, Delivered Defect

Density is not an in-process metric and cannot be measured during sprint execution. Inorder to achieve control

on the Delivered Defect Density, Scrum Master had to focus on the sub-process metric, since those were directly

correlated to the outcome measure of Delivered Defect Density. Hence, by monitoring the sub-process metrics

of Story DD, Design Complexity, Code Quality, RTF and Skill Index during sprint execution, Scrum Master

could have an impact on Delivered Defect Density.

With this awareness, sub-process metric goals were defined. These goals were set at the baseline values

itself as defined in Table 5. However, the simulation exercise showed that if the sub-processes were operating as

per baseline values, the probability of meeting the DDD goal is only around 65%. Being the first sprint, Scrum

Master was willing to accept this risk and proceed with execution, with an intent to determine the actual values

of sub-process performance after Sprint 1.

6.2 Execution phase

During this phase, the Scrum Master meticulously monitored the actual performance of sub-process

metrics and made adjustments to the performance of these sub-process factors by applying rootcause analysis

techniques and professional judgment. The advantage of using a prediction model for in-process monitoring was

that the Scrum Master was certain on which all factors to be addressed, rather than trying to improve multiple

factors without a focus on the end goal of Delivered Defect Density.

Fishbone and 5-Why analysis techniques were used to perform root cause analysis.The root cause

analysis helped scrum master to identify the reasons for sub-process performance not within the expected limits.

Timely actions were identified on such causes identified to improve the sub-process performance.

The actual performance of sub-process metrics were monitored after the completion of each sprint

during the Sprint Retrospective meeting and analyzed.

6.3 Completion of Sprint 1

As per the prediction model, lower values of Story DD and Design complexity will lead to better

Delivered Defect Density. At the end of Sprint 1, it was observed that the actual value of Story DD was higher

than planned value, though Design Complexity was lesser. Code Quality, RTF and Skill Index should have

higher values to reduce Delivered Defect Density. The actual values indicated that these metrics did not achieve

the planned value. The predicted value of Delivered Defect Density using these values was 0.61, which gave an

early warning signal to the Scrum team that the goal may not be achieved, going by the current performance of

sub-processes.

At this stage, the Scrum Master had to initiate actions on all sub-process metrics except for Design

Complexity. Rootcause analysis was performed to understand why these metrics did not meet the planned

values and subsequently corrective actions were implemented. To reduce Story DD, specialized training was

provided to the Business Analyst who defined the user stories. Inorder to improve Skill Index, it was decided to

include a subject matter expert whose competency would raise the average value of the team performance. RTF

and Code Quality were acted upon by improving the coding process and testing process respectively.

6.4 Completion of Sprint 2

At the end of Sprint 2, the actual values indicated that Story DD has reduced to 0.22, which was better

that the planned value. Code Quality and RTF were now better than the planned values. However, Skill Index

had to further improve and Design Complexity had to reduce to meet the overall goal of Delivered Defect

Density. The predicted value of Delivered Defect Density using this actual performance came to 0.59, which

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 72 | Page

met the goal. But the team had to constantly monitor the sub-process metrics to ensure that the overall goal is

met and was under control. Actions were initiated on those metrics which did not meet the planned values.

6.5 Completion of Sprint 3

After the completion of Sprint 3, all the metrics except for RTF further improved. The predicted value

of Delivered Defect Density using these values was 0.58, which was better than the project goal. The Scrum

Master still had one more sprint to initiate actions on RTF which could further improve Delivered Defect

Density. Rootcause analysis was done on how to improve RTF further and actions such as self-check of features

by developers were implemented.

6.6 Completion of Sprint 4

The actual values of Sprint 4 indicated that the sub-process metrics were better than the planned values.

Skill Index could not achieve the planned value being an operation measure and that resources could not be

changed drastically after sprints. However, this was compensated by better performance of other sub-process

metrics. The final predicted value of Delivered Defect Density was at 0.57, with the actual value of sub-process

metrics from Sprint 4.

6.7 Project Closure

At the close of the project, the actual value of Delivered Defect Density was computed. This came to

0.581, which was much better than the project goal of 0.6. This was possible because of systematic actions

initiated by the Scrum team and the end of each sprint with the help of quantitative early warning indicators of

sub-processes, rather than waiting till the end of projects, were no actions would have been possible and

effective.

VII. Conclusion
Agile software development gained increasing popularity in the industry, because of its adaptability to

dynamics of software development and quicker execution time. The methodology of agile is flexible that it is

compatible with other methodologies also. One of the most widely adopted model in software development is

the Capability Maturity Model Integration (CMMI), which provides and evolutionary plateau for process

improvement. In the maturity levels 4 and 5 of CMMI, the model urges software project managers to use

process performance model, which will provide predictive control to the development process. When such a

process performance model is combined with the inherent discipline of Agile, the result is a flexible and

quantitative execution process for software.

This approach was studied by developing a process performance model based on historical data of

project execution. The process level and sub-process level was modelled using regression and the resultant

model was used for performing what-if analysis during the planning and execution phases of the project. The

output of what-if analysis helped the scrum team to take meaningful decisions during the course of project

execution and control the performance of the project.

The prediction model developed from historical data enabled the Scrum team in taking real time

decisions which helped the project achieve its overall objective through focused actions on in-process metrics.

This way, the project had all the advantages of agility, flexibility and lean processes, at the same time achieving

predictability in operations through quantitative monitoring of statistically significant sub-process metrics

The model developed is based on the data gathered from one organization. Hence the coefficients of

the factors in the equation may not be same for other organizations who wish to use the model. However, the

approach for modelling, the process and sub-processes would be of interest to scrum masters wanting to predict

Delivered Defect Density in their projects.

The major challenge in using such model comes from the source data used for development as it is

organization specific. Practitioners shall determine the quality of source data and ensure its integrity before

using for developing the model using the approach specified in this paper. As such, the approach does not have

any significant limitations. However, it could so happen that variables available and the type of data available in

certain organizations could be of different from the ones mentioned in this study. As an example, the data type

of x‟s and Y could be different, in which case other modelling techniques such as ANOVA, Binary Logistic

Regression, Logitetc to be used instead of Multiple Linear Regression. The selection of such technique is

explained in Table 5.

The key strength of the model is that is having the backing of historical data and its usage is validated

in an industrial project. The approach to modelling is flexible to the extent that a given organization can create

its own metrics architecture to determine the processes and sub-process that will have an impact on the Critical

to Quality objective, which in this case is Delivered Defect Density.Since not many papers describe the

development of prediction models for Agile projects, the knowledge in this paper and its approach may be used

Process performance model for predicting Delivered Defect Density in a software scrum project

DOI: 10.9790/0661-1805046073 www.iosrjournals.org 73 | Page

for developing prediction models for other lagging metrics in Agile. This also gives a scope for future work,

where researchers can study the possibility for prediction models for other critical to quality variables in Agile

such as Velocity, Earned Business Value, Agility Index etc.

References
[1]. Abrahamsson, P., Moser, R., Pedrycz, W., Sillitti, A., &Succi, G. (2007, September). Effort prediction in iterative software

development processes--incremental versus global prediction models. In Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on (pp. 344-353). IEEE.

[2]. Buglione, L., &Abran, A. (2007). Improving Estimations in Agile Projects: issues and avenues. In Proceedings of the 4th Software

Measurement European Forum (SMEF 2007), Rome (Italy) (pp. 265-274).
[3]. Cavezza, D. G., Pietrantuono, R., & Russo, S. (2015). Performance of Defect Prediction in Rapidly Evolving Software.

[4]. Cohan, S., & Glazer, H. (2009). An agile development team's quest for CMMI® maturity level 5. In Agile Conference, 2009.

AGILE'09. (pp. 201-206). IEEE.
[5]. Cohen, D., Lindvall, M., & Costa, P. (2003). Agile software development. DACS SOAR Report, (11).

[6]. Cohn, M. (2005). Agile estimating and planning. Pearson Education.

[7]. Cohn, Mike. (2010).Succeeding with agile: software development using Scrum. Upper Saddle River, NJ: Addison-Wesley.
[8]. Concas, G., Marchesi, M., Destefanis, G., &Tonelli, R. (2012). An empirical study of software metrics for assessing the phases of

an agile project. International Journal of Software Engineering and Knowledge Engineering, 22(04), 525-548.

[9]. CMMI Product Team. (2010)CMMI® for Development, Version 1.3. CMU/SEI-2010-TR-033
[10]. Fenton, N., Neil, M., Marsh, W., Hearty, P., Marquez, D., Krause, P., & Mishra, R. (2007). Predicting software defects in varying

development lifecycles using Bayesian nets. Information and Software Technology, 49(1), 32-43.

[11]. Fenton, Norman E., & Shari Lawrence Pfleeger. (1997). Software metrics: a rigorous and practical approach. 2. ed. London:
Intern. Thomson Computer Press [u.a.].

[12]. Hearty, P., Fenton, N., Marquez, D., & Neil, M. (2009). Predicting project velocity in XP using a learning dynamic Bayesian

network model. Software Engineering, IEEE Transactions on, 35(1), 124-137.
[13]. Jalote, Pankaj. (2005).An integrated approach to software engineering. 3rd ed. New York: Springer.

[14]. Kan, Stephen H. (2003). Metrics and models in software quality engineering. 2. ed. Harlow: Pearson Professional Education.

[15]. Levin, Richard I., & David S. Rubin. (1998).Statistics for management. 7th ed. Upper Saddle River, N.J.: Prentice Hall.
[16]. Li, L., & Leung, H. (2014). Bayesian Prediction of Fault-Proneness of Agile-Developed Object-Oriented System. In Enterprise

Information Systems (pp. 209-225). Springer International Publishing.

[17]. McMahon, Paul E. (2011). Integrating CMMI and agile development: case studies and proven techniques for faster performance
improvement. Upper Saddle River, NJ: Addison-Wesley.

[18]. Nasir, M. (2006, June). A survey of software estimation techniques and project planning practices. In Software Engineering,

Artificial Intelligence, Networking, and Parallel/Distributed Computing, 2006. SNPD 2006. Seventh ACIS International Conference
on (pp. 305-310). IEEE.

[19]. Regan, Gerard. (2009).A practical approach to software quality. New York: Springer, 2002

[20]. Runeson, P., &Höst, M. (2009). Guidelines for conducting and reporting case study research in software engineering. Empirical
software engineering, 14(2), 131-164.

[21]. Salo, Outi. &Abrahamsson, Pekka. (2007), An iterative improvement process for agile software development, Wiley.

[22]. Silva, F. S., Soares, F. S. F., Peres, A. L., de Azevedo, I. M., Vasconcelos, A. P. L., Kamei, F. K., & de LemosMeira, S. R. (2015).
Using CMMI together with agile software development: A systematic review. Information and Software Technology, 58, 20-43.

[23]. Singh, P., &Verma, S. (2014). An Efficient Software Fault Prediction Model using Cluster Based Classification. International

Journal of Applied Information Systems (IJAIS), 7(3), 35-41
[24]. Stoddard et al., A mini tutorial for building CMMI process performance models, Software Engineering Institute.

[25]. Sutherland, Jeff. (2013).Scrum: A Revolutionary Approach to Building Teams, Beating Deadlines, and Boosting Productivity,

Random House.
[26]. Sutherland, J., Jakobsen, C. R., & Johnson, K. (2008, January). Scrum and cmmi level 5: The magic potion for code warriors. In

Hawaii International Conference on System Sciences, Proceedings of the 41st Annual (pp. 466-466). IEEE.

[27]. Washizaki, H., Honda, K., & Fukazawa, Y. (2015, August). Predicting Release Time for Open Source Software Based on the
Generalized Software Reliability Model. In Agile Conference (AGILE), 2015 (pp. 76-81). IEEE

