Anthropometric Comparison of Nasal Parameters between Male and Female of Gwalior Region.

S. K. Sharma¹, Massarat Jehan², Raj Laxmi Sharma³, Sudhir Saxena⁴, Akhilesh Trivedi⁵, Vipendra Bhadkaria⁵.

¹Associate professor (HOD), Dept of Anatomy, Gajra Raja Medical College, Gwalior (MP) India

²Post Graduate Student, Dept of Anatomy, Gajra Raja Medical College, Gwalior (MP) India.

³Associate professor, Dept of Pathology, Gajra Raja Medical College, Gwalior (MP) India.

⁴Associate professor, Dept of Anatomy, Gajra Raja Medical College, Gwalior (MP) India.

⁵Assistant professor, Dept of Anatomy, Gajra Raja Medical College, Gwalior (MP) India.

Abstract:

Introduction: Nasal index is a sensitive anthropometric index. It also exhibits sexual differences and it has become a useful tool in Forensic Medicine and reconstructive surgery. It is an important anthropometric parameter for classifying the race and sex of an individual whose identity is unknown.

Aim: The present study was undertaken to provide baseline data of the nasal ergonomics for male and female of Hindu community of Gwalior region.

Material and Method: A random sample of males of 19 to 45 years age group was chosen for examination. Nasal length, nasal breadth, nasal height and nasal depth were measured with the help of Digital Vernier Caliper. Nasal index (NI) were calculated as NB/NH×100. The data was analyzed statistically using Unpaired Student t-test.

Result: Our results are comparable with other studies with mean NI \pm SD of 80.59 \pm 9.122 in male which was significantly higher (p<0.05) than that of females who has NI \pm SD of 77.29 \pm 8.472. Except for nasal depth, the other nasal parameters shows sexual dimorphism.

Conclusion: Based on the mean NI, the predominant nose type is Mesorrhine in 63.73% of male and female (Hindu community) of Gwalior region. This study provides a baseline data for people of Gwalior region which will be valuable in nasal anthropometry for clinical practice, in reconstructive surgery, rhinoplasty and in forensic science. This study should be subjected to further investigation.

Key words: Nasal Index, Nasal Anthropometry, Rhinoplasty, Mesorrhine.

I. Introduction

The nose is one of the best clues to racial origin¹. Facial anthropometry has become an important tool used in genetic counseling, reconstructive surgery and forensic investigation². Nasal Index (NI) exhibits sexual differences³ and it has become a useful tool in Forensic Science⁴.

The NI is very useful in anthropology and it is one of the clinical anthropometric parameters recognized in nasal surgical and medical management^{5,6}. NI is related to regional and climatic differences^{7,8}. Various studies have indicated racial and ethnic differences in nasal index amongst different populations^{2,9,10}. Nasal index measurements is one of the methods anthropologists have used to differentiate living race and subspecies of man.¹¹

On the basis of nasal height and breadth index, Martin and Sallar $(1957)^{12}$ divided noses into the following categories:

Categories	Size of nose	Nasal index		
		On Living head On Skull		
Hyperleptorrhine	Long Narrow Nose	40 to 54.9		
Leptorrhine	Moderately Narrow Nose	<70	<47	
Mesorrhine	Moderate Or Medium Size	70 to 84.9	47 to 50.9	
Platyrrhine	Moderately Wide Nose	85 to 99.9	51 to 57.9	
Hyperplatyrrhine	Very Wide Nose	100 or more	58 or more	

The present study was designed to provide baseline data of certain nasal anthropometric measurements for male and female of Hindu community of Gwalior region, to determine the sexual difference and a normative data of nasal index and to classify their nose type and the comparison of the data with other studies, so that it would be further useful as an essential tool to the researchers, clinicians, rhinoplastic and facial reconstructive surgeons and forensic experts related to this field.

II. Materials & Methods

Study Design: Cross sectional study .

Selection criteria: A random sample of 204 subjects, with 102 males and 102 females in the age group of 19-45 years were selected. This age group were selected, as age negligibly affect the facial parameters in subject above 18 years of age. The selected subject were from Hindu community of Gwalior region, whose ancestors were the residents of their respective region for at least two generations.

Exclusion criteria: Subjects who had trauma of the nose, prior plastic or reconstructive surgery of the face or cleft lips and other congenital facial malformations were excluded from the study.

Measurement procedure: All the measurement were taken with the subject sitting on a chair in a wellilluminated room, in a relaxed condition with the head in the anatomical position. The facial muscles were relaxed in order not to alter the size of the nose. Five relevant nasal surface landmarks were selected with shortest distance between two points of the nose were taken with a Digital Vernier Caliper with accuracy of 0.01 mm. The landmarks were:

- 1. Nasion the point on the root of the nose where the mid-sagittal place cuts the naso-frontal suture.
- 2. Subnasale the point at which the nasal septum merges with the upper cutaneous lip in the mid-sagittal plane.
- 3. Pronasale the point at the tip of nose.

4. Alare - the point at the most prominent side wall of the nose.

To reduce technical error of the measurements, each measurement was taken thrice and average taken.

- The measurement was done by one observer to prevent inter-observer error. The measurements were:
 - Nasal Length (NL) measured from nasion to pronasale (Fig.1)
 Nasal Height (NH) measured from nasion to subnasale (Fig.2)
 - Nasal Breadth (NB) maximum breadth at right angle to the nasal height from ala to ala (Fig.3)
 - Nasal Depth (ND) from pronasale to subnasale (Fig.4)

Fig.1: Showing measurement of nasal length (upper point= nasion; lower point= pronasale)

Fig.2: Showing measurement of nasal height (upper point= nasion; lower point= subnasale)

Fig.3: Showing measurement of Nasal breadth (from right ala to left ala)

Fig.4: Showing measurement of Nasal depth (upper point= pronasale; lower point= subnasale)

The nasal indices were calculated separately for male and female group as \rightarrow NB/NH x 100. The data was computed, tabulated and statistically analyzed using Graph Pad Prism and Microsoft Excel Windows 2007 software. The data obtained were compared with the results of other population in literature.

III. Results

The results of this study were presented in tabular forms (Table 1-3). The dimensions of the nasal parameters obtained in the study are shown in Table 1. Except for nasal depth, the other nasal parameters i.e. mean nasal length, breadth and height in males were significantly higher than those in females (p<0.0001) of Hindu community of Gwalior region.

	Nasal Length		Nasal Heig	Nasal Height		Nasal Breadth		Nasal Depth	
	Male	Female	Male	Female	Male	Female	Male	female	
Mean (cm)	46.44	42.71	49.01	45.31	39.17	34.86	16.65	16.16	
SD	3.847	3.647	4.517	2.878	2.490	2.892	2.482	2.451	
SEM	0.3809	0.3612	0.4473	0.2850	0.2465	0.2863	0.2457	0.2427	
Coefficient of variation	8.28%	8.54%	9.22%	6.35%	6.36%	8.29%	14.90%	15.17%	
P value (two-tailed)	***	***		***		***		0.1511= ns	
t value	t=7.112		t=6.974		t=11.40		t=1.441		
		6 mm				1 1.01			

 Table 1. Descriptive statistics of different nasal parameters (No. of males=102 and females=102)

SD = standard deviation; SEM= standard error of mean; ***= P<0.0001; ns=not significant

Descriptive statistics in Table 2, shows that the mean NI (\pm SD) of male was 80.59 \pm 9.122 and 77.29 \pm 8.472 for females, both of which falls under the category of **Mesorrhine** type of nose. This also shows that males of Gwalior region have a significantly higher NI than females (p<0.05). This confirm the existence of sexual difference in nasal parameters between male and female of Gwalior region.

Table 2. Descriptive statistics of Nasal Index of Male and Female of Gwalior region

Unpaired Student t- test	Nasal II	ndex (NI)
	Male	Female
Minimum	64.31	61.84
Maximum	104.6	102.5
Mean	80.59	77.29
SD	9.122	8.472
SEM	0.9032	0.8389
Coefficient of variation	11.32%	10.96%
P value (two-tailed)	0.0079** (significant = F	P < 0.05)
t value	t=2.682	
Difference between means	3.306 ± 1.233	
95% confidence interval	0.8896 to 5.722	
R squared	0.03438	
Average mean (M+F)	78.94	

The distribution of the nose type in Hindu community of Gwalior region were shown in Table 3. Overall the most dominant nose type was Mesorrhine with 63.73% and the least was Leptorrhine type with 14.71%.

Table 3.	Frequency	(percentage)	of nose typ	pes in male	and female of	of Gwalior region
		(T				

	$\mathbf{F} = \mathbf{F} = $		01 10 9 1011
Nose type	Males (n)	Females (n)	All n (%)
Leptorrhine	12	18	30 (14.71)
Mesorrhine	58	72	130 (63.73)
Platyrrhine	32	12	44 (21.57)
All	102	102	204 (100%)

IV. Discussion

The present study established that the predominant nose type to be Mesorrhine based on the mean NI of 80.59 ± 9.122 and 77.29 ± 8.472 for male and female respectively. The existence of sexual difference in nasal parameters between male and female is possibly due to many etiological factors as genetic, hormonal, nutrition and other related factors. The comparative study of our results with other literatures has been shown in Table 4-8.

The statistics of nasal length estimated by different authors on different races were compared with our study in Table no. 4. Our result were comparative to those of other studies.

Table 4 - Comparison of Masar Dength of unferent populations							
Population	Author	Males		Females			
		Sample size	Mean+S.D.	Sample size	Mean+S.D.		
Bheel-Meena (Rajasthan)	Gangrade ¹³ (2012)	500	45.9	500	43.9		
Brahmins (Punjab)	Kaushal ¹⁴ (2013)	100	47.59±4.24	100	44.09±3.79		
Majhabi-Sikhs (Punjab)	Kaushal ¹⁴ (2013)	100	44.64±4.73	100	41.41±2.21		
Muslims (Punjab)	Kaushal ¹⁴ (2013)	100	45.88±4.62	100	39.36±4.21		
Bekwara (Nigeria)	Esomonu ¹⁵ (2013)	50	38.4 ± 2.9	50	39.1 ± 2.9		
Ibibio (Nigeria)	Eliakim-Ikechukwu ¹⁶ (2013)	100	48.1 ± 0.4	100	44.7 ± 0.4		
Yakurr (Nigeria)	Eliakim-Ikechukwu ¹⁶ (2013)	100	51.6 ± 0.4	100	37.7 ± 0.5		
Hindus(Gwalior region)	Present study	102	46.44±3.847	102	42.71±3.647		

Table 4 - Comparison of Nasal Length of different populations

Table 5 shows the comparative study of nasal height of different populations in literature. These results were also comparable to our study.

Population	Author	Male		Female	
		Sample size	Mean+S.D.	Sample size	Mean+S.D.
Latvians	Nagle et al ¹⁷ (2005)	39	58.7±5.4	38	56.7±5.7
Ahirwars (M.P.)	Singh and Purkait ¹⁸ (2006)	59	43	52	41
Dangis (M.P.)	Singh and Purkait ¹⁸ (2006)	67	46	67	43
Igbos (Nigeria)	Oluto et al ¹⁹ (2009)	300	48.7±0.84	300	44.6±0.74
Ijaws (Nigeria)	Oladipo et al ²⁰ (2010)	500	40.8±0.25	500	38.9±0.30
Kosovo Albanian	Staka ²¹ (2012)	101	55.26 ±3.57	103	36.90 ± 2.67
Brahmins (Punjab)	Kaushal ¹⁴ (2013)	100	53.73±3.27	100	49.14±3.51
Majhabi-Sikhs (Punjab)	Kaushal ¹⁴ (2013)	100	51.31±4.01	100	48.32±2.46
Muslims (Punjab)	Kaushal ¹⁴ (2013)	100	53.24±4.81	100	46.83±4.45
Bekwara (Nigeria)	Esomonu ¹⁵ (2013)	50	42.4±2.5	50	42.8± 2.7
Hindus(Gwalior region)	Present study	102	49.01±4.517	102	45.31±2.878

 Table 5- Comparison of Nasal Height of different populations

The nasal breadth statistics reported by different authors on different races were compared with our study in Table 6. Our result were comparative to those of other studies.

Table 6 -	Comparison	of Nasal	Breadth of	different	populations
I GOIC O	Comparison		Di cuam oi		populations

Population	Author	Ma	le	Female		
_		Sample size	Mean+S.D.	Sample size	Mean+S.D.	
Latvians	Nagle et al^{17} (2005)	39	35.3+3.2	38	32.8+2.7	
Ahirwars(M.P.)	Singh and Purkait ¹⁸ (2006)	59	34	52	34	
Dangis(M.P.)	Singh and Purkait ¹⁸ (2006)	67	35	67	33	
Onges(Andaman islands)	Pandey ²² (2006)	27	37.8+0.6	26	35.0+2.1	
Igbos (Nigeria)	Oluto et al^{19} (2009)	300	48.7+0.84	300	44.6+0.74	
Limbus (Nepal)	Shrestha ²³ (2009)	99	38.05+4.28	118	37.73+3.70	
Rais (Nepal)	Shrestha ²³ (2009)	111	38.36+2.58	116	36.01+2.10	
Ijaws (Nigeria)	Oladipo et al ²⁰ (2010)	500	40.6+0.25	500	37.9+0.25	
Bheel-Meena (Rajasthan)	Gangrade ¹³ (2012)	500	38.1	500	35	
Kosovo Albanian	Staka ²¹ (2012)	101	36.90 ± 2.67	103	33.12 ± 2.22	
Brahmins (Punjab)	Kaushal ¹⁴ (2013)	100	37.47+4.29	100	34.24+2.73	
Majhabi-Sikhs (Punjab)	Kaushal ¹⁴ (2013)	100	39.66+4.55	100	33.36+3.02	
Muslims (Punjab)	Kaushal ¹⁴ (2013)	100	35.37+3.19	100	31.99+1.6	
Bekwara (Nigeria)	Esomonu ¹⁵ (2013)	50	40.1 ± 2.4	50	39.8 ± 2.1	
Ibibio (Nigeria)	Eliakim-Ikechukwu ¹⁶ (2013)	100	41.4 ± 4	100	36.3 ± 0.4	
Yakurr (Nigeria)	Eliakim-Ikechukwu ¹⁶ (2013)	100	40 ± 0.4	100	38.2 ± 0.4	
Hindus (Gwalior region)	Present study	102	39.17±2.49	102	34.86±2.892	

Table 7 shows the comparative study of nasal depth of different populations in literature. The results were comparable to our study.

	Table 7 - Comparison of Masar Depth of unrefent populations								
Population		Author		Male	Female				
			Sample size	Mean+S.D.	Sample size	Mean+S.D.			
Brahmins (Punjab)		Kaushal ¹⁴ (2013)	100	20.87+3.14	100	17.72+3.67			
Majhabi-Sikhs(Punj	ab)	Kaushal ¹⁴ (2013)	100	18.63+3.26	100	16.97+3.09			
Muslims (Punjab)		Kaushal ¹⁴ (2013)	100	16.53+1.65	100	16.23+1.77			
Hindus(Gwalior reg	ion)	Present study	102	16.65±2.482	102	16.16±2.451			

Table 7 - Compar	rison of Nasal Dep	oth of different p	opulations
------------------	--------------------	--------------------	------------

The NI calculated by different authors on different races were compared along with their nose type in Table 8. It shows that the overall most common nose was Mesorrhine and Platyrrhine type. Our estimated results on Hindu community of Gwalior region were match with those of Singh and Purkait (on Dangis and Ahirwars of Madhya Pradesh), Oladipo et al (on Andoni of Nigeria) and Gangrade (on Bheel- Meena of Rajasthan) studies.

Population	Author		Male		Female			
		Ν	Mean±S.D.	Nose type	Ν	Mean±S.D.	Nose type	
Onges(Andaman islands)	Pandey ²² (2006)	27	87.43±6.63	Platyrrhine	26	90.07±7.10	Platyrrhine	
Ahirwars (M.P.)	Singh and Purkait ¹⁸	59	81	Mesorrhine	52	82.4	Mesorrhine	
	(2006)							
Dangis (M.P.)	Singh and Purkait ¹⁸	67	76.5	Mesorrhine	67	76.5	Mesorrhine	
	(2006)							
Andoni (Nigeria)	Oladipo et al ²⁴ (2009)	200	79.83 ± 4.19	Mesorrhine	200	83.77 ± 1.09	Mesorrhine	
Okrika (Nigeria)	Oladipo et al ²⁴ (2009)	200	86.23 ±1.72	Platyrrhine	200	86.46 ± 2.37	Platyrrhine	
Hausa (Nigeria)	Anas ²⁵ (2010)	224	70.7 ± 11.3	Mesorrhine	161	67.2 ± 8.3	Leptorrhine	
Yoruba (Nigeria)	Anas ²⁵ (2010)	100	100.9 ± 8.9	Platyrrhine	97	94.1 ± 8	Platyrrhine	
Bini Adolescents (Nigeria)	Eboh ²⁶ (2011)	100	99.13 ± 9.26	Platyrrhine	100	99.27±11.67	Platyrrhine	
Ilorin (Nigerian Africans)	Jimoh et al ²⁷ (2011)	58	90.7	Platyrrhine	47	88.2	Platyrrhine	
Ukwuani (Nigeria)	Eboh, John ²⁸ (2011)	-	97.47±12.88	Platyrrhine	-	98.07 ± 8.37	Platyrrhine	
Bheel-Meena (Rajasthan)	Gangrade ¹³ (2012)	500	83	Mesorrhine	500	79.73	Mesorrhine	
Ibo (Nigeria)	Eliakim-Ikechukwu ²⁹	114	107.62±1.09	Platyrrhine	114	98.89±1.30	Platyrrhine	
	(2012)							
Yoruba (Nigeria)	Eliakim-Ikechukwu ²⁹	78	110.30±1.92	Platyrrhine	78	97.07 ± 2.11	Platyrrhine	
	(2012)							
Kosovo Albanian	Staka ²¹ (2012)	101	67.07 ± 6.67	Leptorrhine	103	63.87 ± 5.56	Leptorrhine	
Ikwerre (Nigeria)	Osunwoke ³⁰ (2012)	250	93.8	Platyrrhine	250	95.8	Platyrrhine	
Ogu (Nigeria)	Osunwoke ³⁰ (2012)	250	95.8	Platyrrhine	250	87.34	Platyrrhine	
Brahmins	Kaushal ¹⁴ (2013)	100	70.02±9.13	Mesorrhine	100	69.89±6.04	Leptorrhine	
Majhabi-Sikhs	Kaushal ¹⁴ (2013)	100	76.51±8.98	Mesorrhine	100	68.95±6.22	Leptorrhine	
Muslims	Kaushal ¹⁴ (2013)	100	67.04±8.87	Leptorrhine	100	69.38±8.09	Leptorrhine	
Bekwara (Nigeria)	Esomonu ¹⁵ (2013)	50	94.65±6.42	Platyrrhine	50	90.33±6.45	Platyrrhine	
Ibibio (Nigeria)	Eliakim Ikechukwu ¹⁶	100	86.58±1.20	Platyrrhine	100	81.75±1.14	Mesorrhine	
	(2013)							
Yakurr (Nigeria)	Eliakim-Ikechukwu ¹⁶	100	77.76±0.82	Mesorrhine	100	102.27±1.31	Platyrrhine	
	(2013)							
Hindus(Gwalior region)	Present study	102	80.59±9.122	Mesorrhine	102	77.29±8.472	Mesorrhine	

|--|

N= no. of subjects

Afro-American (Ofodile,1995)³¹ and Indo-African (Sparks and Jantz, 2002)³² have platyrrhine nose type. Most Caucasians and also Albanian population (Pittard, Luschan,Tildesley)^{33,34,35} have leptorrhine type of nose. Also, Howale³⁶ (2012) studied 75 Dry skull of Maharashtra region and estimated the NI to be 54.30 ± 4.19 which suggests it to be Leptorrhine type.

The present study has been able to establish the mean nasal dimensions of males and females of Hindu community of Gwalior region. It also established that as in other populations, the nasal parameters were sexually dimorphic. The result of this study will be useful in forensic medicine, anthropology and rhinoplasty and will also serve as a future framework for estimating the other craniofacial variables in same population.

V. Conclusion

The present study estimated the predominant nose type to be Mesorrhine in 63.73% of male and female (Hindu community) of Gwalior region, based on the mean NI of 80.59 ± 9.122 and 77.29 ± 8.472 respectively. The NI of male is significantly higher than females (p<0.05) which confirms the existence of sexual difference in nasal parameters possibly due to genetic, hormonal, nutrition and other related factors. This study should be subjected to further investigation because of its relevance to forensic science and clinical anthropometry. This will provide a baseline data of Gwalior population which will be valuable in nasal anthropometry for clinical

practice, in reconstructive surgery and rhinoplasty and in forensic science and therefore needs further investigation.

Acknowledgement:

We would like to express our gratitude to departmental staff and colleagues of department of Anatomy for their help and support and all the students and subjects who participated in this work.

Reference

- [1] Madison G. Part I language and Nationality. In: The Passing of the Great Race 2004; 2:1-6.
- Oladipo GS, Olabiyi AO, Oremosu AA, Noronha CC. Nasal indices among major ethnic groups in Southern Nigeria. Scientific Res. Ess. 2007; 2(1): 20- 22.
- [3] Zhang XT, Wang SK, Zhang W, Wang XF. Measurement and study of the nose and face and their correlations in the young adult of Han nationality. Plast Reconstr. Surg. 1990; 85(4):532-536.
- [4] Xu B, Wang Y, Ma J, Li M, Xu L. A computer-aid study on the craniofacial features of Archang race in Yunnan province of China. Hua Xi Kou Qiang Yi Xue Za Zhi. 2011; 19(6):394-96.
- [5] Hansen B, Mygind N. How often do normal persons sneeze and blow nose? Rhinol. 2002; 40(1):10-12.
- [6] Zankl A, Eberle L, Molinari L, Schinzel A. Growth charts for nose length, nasal protrusion and philtrum length from birth to 97 years. Am. J. Med. Genet. 2002; 111(4):388-91.
- [7] Last RJ. Anatomy Applied and Regional 6thed. Churchill Livingston,1981; 398-403.
- [8] Farkas LG, Kolar IR, Munro IR. Abstract on the geography of the nose, a morphometric study. Aesth. Plast. Surg. 1986; 10(4):191-223.
- [9] Franciscus RG, Long JC. Variation in human nasal height and breadth. Am. J. Phys. Anthropol. 1991; 85(40):419-27.
- [10] Porter JP, Olson KL. Analysis of the African American female nose. Plastic Reconstruct. Surg. 2003; 111(2): 627-28.
- [11] Risely HH. The People of India 2nd ed 1915, Oriental Books, Delhi. 1969; 395-99.
- [12] Martin R, Saller K. Lehrbuch der Anthropologie. Gustav Fisher Verlag. Stuttgart 1957.
- [13] Gangrade PR, Babel H. Anthropometric study of the Nasal Index of the Bheel Meena Tribe of Southern Rajasthan. IJCRR. 2012;4(19): 88-91.
- [14] Kaushal S, Patnaik VVG, Kaur P. Somatometric Analysis of Nasal Morphology in the Endogamous Groups of Punjab. Hum Bio Rev 2013;2(1):1-11.
- [15] Esomonu UG, Ude RA, Lukpata PU, Nandi EM. Anthropometric study of the nasal index of Bekwara ethnic group of cross river state, Nigeria. International Research Journal of Applied and Basic Sciences 2013;5(10):1262-1265.
- [16] Eliakim-Ikechukwu C, Iro CM, Ihentuge CJ, Bassey TE. Nasal Parameters of Ibibio and Yakurr Ethnic Groups of South South Nigeria. IOSR-JPBS.2013;5(6):23-26.
- [17] Nagle E, Teibe U, Balode I. Craniofacial morphology in parents of cleft children and healthy individuals. Stomatologija, Baltic dental and maxillofacial journal 2005;8:53-56.
- [18] Singh P, Pukrait R. A Cephalometric study among Sub caste groups of Dangi and Ahirwar of Khurai block of Madhya Pradesh. Anthropologist 2006;8(3): 215-217.
- [19] Olutu J, Eroje A, Oladipo GS, Edibamode E. Anthropometric study of the facial and nasal length of adult Igbo ethnic group in Nigeria. The Internet journal of Biological Anthropology 2009;2(2), viewed 29th April, 2010, http://ISPUB.com/html.
- [20] Oladipo GS, Okoh PD and Hart JS. Anthropometric study of some craniofacial parameters: Head Circumference, Nasal Height, Nasal Width and Nasal index of adult Ijaws of Nigeria. Asian journal of Medical Sciences. 2010: 2(3): 111-113.
- [21] Staka G, Dragidella F, Disha M. Anthropometric Studies of Nasal Index of the Kosovo Albanian population. Antrocom Online Journal of Anthropology. 2012; 8(2): 457-62.
- [22] Pandey AK. Cephalofacial variation among Onges. Anthropologist 2006;8(4):245-249.
- [23] Shrestha O, Bhattacharya S, Jha N, Dhungel S, Jha CB, Shrestha S, Shrestha U. Craniofacial anthropometric measurements among Rai and Limbu community of Sunsari district of Nepal. Nepal Med Coll J 2009;11(3):183-185.
- [24] Oladipo GS, Eroje MA, Fahwehinmi HB. Anthropometric comparison of nasal indices between Andoni and Okrika tribes of Rivers State, Nigeria. Int. J. Med. Med. Sci. 2009;1(4):135-137.
- [25] Anas IY, Saleh MS. Anthropometric Comparison of Nasal Indices between Hausa and Yoruba Ethnic Groups in Nigeria. Journal of Scientific Research and Reports. 2010;3(3):437-444.
- [26] Eboh DEO. Nasal Indices among Bini Adolescents in Edo State, Nigeria. Int. J. Morphol. 2011;29(4):1231-1234.
- [27] Jimoh RO, Alabi SB, Kayode AS, Salihu AM, Ogidi OD. Rhinometry: spectrum of nasal profile among Nigerian Africans. Braz. j. otorhinolaryngol. 2011;77(5):589-93.
- [28] Eboh DEO, John EA. Morphological assessment of face and nose shapes among the Ukwuanis of Delta state, Nigeria. J. Exp. Clin. Anat. 2011;10(1):4-8.
- [29] Eliakim-Ikechukwu C, Bassey T, Ihentuge C. Study of the Nasal Indices and Bialar Angle of the Ibo and Yoruba Ethnic groups of Nigeria. J. of Biol. Agric. and Healthcare 2012;2(11):149-152.
- [30] Osunwoke EA, Oladipo GS, Ordu KS, Paul CW. Anthropometric Study of the Cephalic and Nasal Indices of Ogu and Ikwerre People of Nigeria. Current Research Journal of Biological Sciences 2012;4(1):1-3.
- [31] Ofodile FA, Bokhari F. The African American nose: part II. Ann Plast Surg. 1995; 34:123-29.
- [32] Sparks CZ, Jantz RL. A reassessment of human cranial plasticity: boas revisited. Proceeding of the National Academy of Sciences 2002; 99:14636-39.
- [33] Pittard E. Anthropologie de la Roumanie Les peuples sporadiques. Contribution à l'étude anthropologique des Albanais, recontrés principalement dans la Dobrodja 1910; 395-438.
- [34] Luschan von F. Völker, Rassen, Sprachen 1922; 63.
- [35] Tildesley ML. The Albanians of the North and South 1933; 21-52.
- [36] Howale DS, Jain LK, Iyer K, Lekharu R. Orbital and nasal indices of Maharashtra region: a direct measurement study using dry skulls. International Journal Of Current Research 2012;4(8):158-161.