# Volatility and Capital Market Returns Amidst Corona Virus Pandemic: E-Garch Evidence From Nigeria

Ogbonna, Udochukwu Godfrey Ph.D<sup>1</sup> Ejem, Chukwu Agwu, Ph.D<sup>2</sup>,

1. Department of Management Science, Rhema University, Aba, Nigeria.

2. Department of Banking and Finance, Abia State University, Uturu, Nigeria

## Abstract

This study, the relationship between Volatility and Capital Market Returns amidst Corona Virus Pandemic in Nigeria is apt because an institution like the capital market should be properly bulwarked amidst the Novel Corona Virus (COVID-19) pandemic and its daily return trend should properly and adequately disclosed to investors for proper precautions. To achieve this objective, the daily time series data representing the capital market returns (proxied by All Share Index) was sourced from Nigerian Stock Exchange Reports for the period; February 03, 2020 to June 30, 2020. The EGARCH framework was used in order to ascertain the conditional variance (volatility), asymmetric effect and volatility persistence. The following findings were made, conditional variance (volatility) impacts insignificantly on the capital market returns in Nigeria amidst COVID-19 within the period under review. Again, the Nigerian capital market volatility is persistent amidst COVID-19 in Nigeria within the period of this study. Asymmetry effect was invalidated in the Nigeria capital market in the first four months of the pandemic in Nigeria. The presence of high persistent volatility clustering was confirmed within the period of the study. It was also found that conditional volatility will rise or fall when the absolute value of the standardized residual is larger (smaller). Having found that volatility is insignificantly related to the capital market return, the researchers; therefore encourage investors to go about their normal business activities in the capital market. Again, since volatility is persistent, the regulatory authority should increase her surveillance role in order to avert perceived doom days as a result of the COVID-19 pandemic.

Keywords: Capital Market, Volatility, Corona virus, E-GARCH, Nigeria

Date of Submission: 16-07-2020 Date of Acceptance: 31-07-2020

## I. Introduction

The outbreak and spread of corona virus pandemic named COVID-19 has undoubtedly disrupted the global economy in general and Nigerian financial system in particular. The evolution of the disease and its economic impact is highly uncertain which makes it difficult for investors and policymakers alike to formulate an appropriate macroeconomic policy and investment decisions. As a result, the shocks from the pandemic seem to have steered uncertainty in the Nigerian capital market and perceived to have also caused a sharp drop in the capital market returns. In the words of Warwick and Roshen [30], the decline in aggregate demand, together with the original risk shocks cause a sharp drop in equity markets. The funds from equity markets are partly shifted into bonds, partly into cash and partly overseas depending on which markets are most affected. Central banks respond by cutting interest rates which drive together with the increased demand for bonds from the portfolio shift, drives down the real interest rate. Equity markets drop sharply both because of the rise in risk of the COVID-19 and also because of the expected economic slowdown and the fall in expected profits.

Sequel to the aforementioned, special attention should be given to the capital market, especially in Nigeria. This is because the capital market as one of the environments of investment decisions; is an avenue for the interactions among the surplus and deficit economic units of any economy. The capital markets facilitate economic growth by enhancing liquidity and providing funds for industrialization and economic development. They also act as interesting investment centers and avails long-term capital to the listed firms by pooling funds from different investors and allow them to expand in business by offering investors alternative investment avenues to put their surplus funds. It plays a crucial role in economy of the country, which transfers investment fund from stock investors to stock borrowers as already stated which is necessary for healthy economy [24, 1, 14, 17].

On capital market return and volatility of the stock market, a rational investor makes investments with some expectation of returns and a fall in stock prices weakens consumer confidence and drive down consumer spending. Capital market volatility presence in the stock market would lead investors to demand a higher risk

premium, creating higher cost of capital, which impedes investment and slows economic development especially in this COVID-19 pandemic.

Emphatically, volatilities in capital market behavior are of importance as they shed light on the data generating process of the return. As a result, such issues guide investors in their decision making process because not only are the investors interested in returns, but also in the uncertainty of such returns. Efforts towards the capital market palliative amidst this pandemic would be an exercise in futility if volatility of the stock market is not addressed. This is because a volatile stock market weakens consumer confidence and drives down consumer spending. This can alter investment equilibrium position of an economy as investors turn to purchase stock of larger well known firms at the expense of new firms. It can trigger a general rise in cost of capital and directly affect economic growth. Investors' portfolio allocation would be affected as they would have to hold more stocks in their portfolio in order to reap the benefits of diversification [26,15]. Again an institution like the capital market should be properly bulwarked amidst the Novel Corona Virus (COVID-19) and its daily return trend should be adequately disclosed to investors for proper precautions. The above concerns triggered the interest of the researchers to embark on this study concentrating on the first four months of COVID -19 pandemic in Nigeria.

The subsequent sections of this study are decomposed as follows; section two takes care of review of related literature; section three handles the materials and methods of analysis adopted; section four analyses the data, results and interpretation, while section five addresses conclusion and recommendation.

### **II. Literature Review**

In finance and economics, plethora of issues has aroused the interest of researchers to work on capital market returns and volatility. The novel COVID-19 has also queued as one such occurrence. According to Karolyi [19] the existence of excessive volatility or 'noise', in the stock market undermine the usefulness of stock prices as a 'signal' about the true intrinsic value of a firm, a concept that is core to the true paradigm of the information efficiency of markets. Emenike and Aleke [9] volatility is a measure of risk; hence an increase in volatility signals and higher expected future risk. To bear this risk, investors will require higher returns and are thus inclined to pay less for the relevant equity. It can be adduced then that relationship between expected returns and expected volatility has come to be. Theory generally predicts a positive relationship between expected stock returns and volatility, if investors are risk averse. That is, equity premium provides more compensation for risk when volatility is relatively high. In other words, investors require larger expected return from a security that is riskier [25]. Emenike [10] also added that volatility clustering occurs when large stock price changes, of both signs, and small price changes are followed by periods of small price changes. In another way, Asymmetry (leverage effect) means that a fall in returns is followed by an increase in volatility greater than the volatility induced by an increase in returns. This implies that more prices wander far from the average trend in a crash than in bubble because of higher perceived uncertainty [13, 3]. These characteristics are perceived as indicating a rise in financial risk, which can adversely affect investors' assets and wealth. A greater risk premium results in a higher cost of capital, which then leads to less private physical investment [25].

The orthodox measure of volatility as represented by variance or standard deviation is unconditional and does not recognize that there are interesting patterns in asset volatility, example, time-varying and clustering properties [6]. Scholars and researchers have introduced various models to explain and predict these patterns in volatility. Engle [12] introduced the autoregressive conditional heteroskedasticity (ARCH) to model volatility. Engle [12] modeled the heteroskedasticity by relating the conditional variance of the disturbance in the recent past. Bollerselev [5] generalized the ARCH model by modeling the conditional variance to depend on its lagged value as well as squared lagged value of disturbance, which is called generalized autoregressive conditional heteroskedasticity (GARCH). The model includes GARCH-in-mean (GARCH-M) model introduced by Engle and Granger [11] and other models introduced by other researchers.

On COVID-19 in synopsis, the outbreak was as a result of the SARS-CoV-2 virus. It was reportedly started in December 2019 in Wuhan city in Hubei province of China. It was formerly named on February 11, 2020 by the World Health Organization (WHO) as the Severe Acute Respiratory Syndrome Corona virus 2 (SARS-CoV-2). The novel COVID-19 continues to spread across the world with clusters of pneumonia cases. Initially the epicenter of the outbreak was China with reported cases either in China or being travelers from China. This outbreak after thorough examination was declared a Public Health Emergency of International Concern (PHEIC) by the World Health Organization (WHO) on January 30, 2020 [29]. Later named the Corona virus disease 2019 with abbreviation; COVID-19 [32, 31, 4].

Due to the outbreak, researchers around the globe are out to exhume the health, economic, social and political impacts of the pandemic [16, 27, 23]. For instance, Jordà et al [18] studied the long-run effects of a sample of 12 major epidemics in Europe stretching back to the 14th century and found that pandemics were followed by multiple decades of low natural interest rates, due to higher precautionary saving and depressed investment opportunities. Indeed, unlike wars, pandemics do not destroy physical capital, and typically give rise

to a long period of excess capital per surviving worker. Also, Correia et al, [8] estimate that this pandemic has drastically reduced manufacturing activity and consumption growth in USA by around 20%, while Barro et al, [2] with Cross-country panel regressions estimated the adverse effect of the pandemic impact on global GDP to be around 6–8% overall. For the US, the quarterly contraction is expected to be largest in the second quarter. It is also notable that, by the end of 2020, the level of US GDP under these projections would still fall short. It points to cross-country spillovers as an important amplification channel of the Covid-19 shock Correia et al [8]. Due to the rise in the cases and public health risk COVID-19 poses to the world, the World Health Organization (WHO) has declared a public health emergency of international concern to coordinate international responses to the disease, which is now a global pandemic [30]. Again, United Nations has tagged the COVID-19 pandemic a health, economic and social crisis [29]. In the same way, UNCTAD [28] sees the COVID-19 as a public health emergency and obvious economic threat.

In Nigeria, a good number of measures are put in place to combat the spread of the pandemic; President Muhammadu Buhari directed the cessation of all movements in Lagos and the Federal Capital Territory (FCT) for an initial period of 14 days, which took effect from 11 pm on Monday, 30th March 2020. The movement restriction, which was extended by another two-week period, was partially put on hold with some businesses commencing operations from May 4, 2020. On April 27th, 2020, Nigeria's President, Muhammadu Buhari declared an overnight curfew from 8 pm to 6 am across the country, as part of new measures to contain the spread of the COVID-19. This came along with the phased and gradual easing of lockdown measures in FCT, Lagos, and Ogun States, which took effect from Saturday, 2nd May 2020, at 9 am. On Monday, 29th June 2020 the Federal government extended the second phase of the eased lockdown by 4 weeks and approved interstate movement outside curfew hours with effect from July 1, 2020 [20].

As recorded in one of the researchers' work, notwithstanding the efforts and measures by the President of Nigeria, President Muhammadu Buhari under the auspices of the Presidential Task Force (PTF) and the National Centre for Disease and Control (NCDC), there is yet increased daily records of new cases of the COVID-19. As at the time of revisiting the two papers on July 14, 2020, 36 states and FCT had 199016 samples tested, 33616 cases were confirmed, discharged cases were 13792 and total fatalities were 754, while globally from 213 countries and territories had 12964809 confirmed cases and 570288 death [21]. Table 1 and Figure 1 in the appendix are distribution and the trend of confirmed cases, active cases, critical cases, new cases, new death, total death and total recovery computed from table. A close look at the figure 1 in the appendix as computed from table 1 in the appendix shows a persistent increase in all the cases recorded.

## **III. Data and Methods**

The daily time series data representing the capital market returns (proxied by All Share Index (ASI)) employed in this study is obtained from Nigerian Stock Exchange Reports for period; February 03, 2020 to June 30, 2020. The choice of EGARCH framework is to accommodate examination of conditional variance (volatility), asymmetric effect and volatility persistence [22]. The model for volatility using EGARCH framework is specified as follows:  $In \vartheta_{t}^{2} = \omega + \beta_{in} \vartheta_{t-1}^{2} + \alpha \left[ \frac{\varepsilon t - 1}{\vartheta t - 1} - \frac{2}{x} \right] + \Upsilon \left[ \frac{\varepsilon t - 1}{\vartheta t - 1} \right]$ Where,  $\omega, \beta, \alpha, \Upsilon$  are constant parameters, In  $\vartheta_{t}^{2}$  = the one period ahead volatility forecast;  $\omega$  = the

mean level,  $\beta$  = persistence parameter  $\propto$  = volatility clustering coefficient

In  $\vartheta_{t-1}^2$  = the past variance,  $\Upsilon$  = the leverage effect.

## **Decision Rule**

The EGARCH-in-mean model is an improvement of the GARCH which imposes a non-negativity constant on market variable, and permits for conditional variance to respond asymmetrically to returns innovations of different signs. If  $\gamma$  is negative, leverage effect exists, implying that, bad news increases predictable volatility more than good news of similar magnitude [3, 7]. In other words, negative value of  $\gamma$  is called the 'sign effect'. If  $\propto$  is positive, then the conditional volatility tends to rise (fall) when the absolute value of the standardized residuals is larger (smaller).  $\propto$  is called the 'magnitude effect'.

## **IV. Results and Discussion**

## 4.1. Trend of Daily ASI from February 03, 2020 to June 30, 2020

A close look at the figure 1 below suggests the presence of fluctuations or volatility in ASI within the scope of the study in Nigeria. This shows the presence of ARCH effects in the model and confirmed the choice of EGARCH framework in the estimation of the model. It is observed that the trend tilted more towards negative than positive amidst the period under review.



### 4.2. Description of the Data, ASI

Table 2 below is a summary of the distributional features of daily all share index (ASI). The table revealed that daily data Jarque Bera recorded coefficient of 34.70591 with probability value of 0.000000 suggesting an abnormal distribution.

|              | ASI       |
|--------------|-----------|
| Mean         | -0.001547 |
| Median       | -0.000500 |
| Maximum      | 0.031200  |
| Minimum      | -0.049100 |
| Std. Dev.    | 0.012416  |
| Skewness     | -0.749670 |
| Kurtosis     | 5.449271  |
| Jarque-Bera  | 34.70591  |
| Probability  | 0.000000  |
| Sum          | -0.156200 |
| Sum Sq. Dev. | 0.015416  |
| Observations | 101       |

# Table 2. Descriptive Statistics of the Data, ASI

## 4.3. Estimation of Model using EGARCH

The estimation results are shown below in table 3;

In table 3 below revealed as follows; the mean equation reveals that the coefficient of the conditional volatility  $(b_2)$  is positive and insignificant. This shows that conditional variance (volatility) impacts insignificantly on the capital market returns in Nigeria amidst COVID-19 within the period of this study. This result contradicts the general theory that predicts a positive relationship between expected stock returns and volatility, if investors are risk averse. That is, equity premium provides more compensation for risk when volatility is relatively high. In other words, investors require larger expected return from a security that is riskier.

The persistent parameter ( $\beta$ ) is positive and significant suggesting that the Nigerian capital market volatility is persistent amidst COVID-19 in Nigeria within the period under study.

Asymmetry parameter  $(\Upsilon)$  is positive and insignificant, invalidating asymmetric effect in the Nigeria capital market in the first four months of the pandemic. This corroborates the result of the mean equation that reveals the coefficient of the conditional volatility (b<sub>2</sub>) to be positive and insignificant. This shows that the news of COVID-19 is not magnifying volatility more than previous volatility in the capital market returns in Nigeria within the period of this study.

Also the sum of the ARCH and GARCH parameters  $\alpha + \beta$  is approximated to be 1 ( $\alpha + \beta = 1.331136$ ) for daily all share index suggesting a high persistent of volatility clustering. Magnitude effect ( $\propto$ ) (volatility

clustering) coefficient of EGARCH is positive and significant. That means the conditional volatility will rise or fall when the absolute value of the standardized residual is larger (smaller). The Durbin-Watson (Dw) statistics is 1.633939, suggesting absence of autocorrelation in all the models.

| Dependent Variable: ASI           |                           |                                 |                   |           |  |  |  |
|-----------------------------------|---------------------------|---------------------------------|-------------------|-----------|--|--|--|
| Method: ML ARCH - Normal of       | listribution (BFGS        | 5 / Marquardt steps             | 5)                |           |  |  |  |
| $Q = C(4) + C(5)^*(Q(-1) - C(4))$ | + C(6)*(RESID(-           | -1)^2 - GARCH(-1                | .))               |           |  |  |  |
| GARCH = Q + C(7) * (RESID)        | $(-1)^2 - Q(-1)) + Q(-1)$ | C(8)*(GARCH(-1)                 | - Q(-1))          |           |  |  |  |
| Variable                          | Coefficient               | Std. Error                      | z-Statistic       | Prob.     |  |  |  |
| B <sub>2</sub> (GARCH)            | 11.59077                  | 14.97121                        | 0.774204          | 0.4388    |  |  |  |
| $b_1(ASI\_1_)$                    | 0.231021                  | 0.123695                        | 1.867666          | 0.0618    |  |  |  |
| $b_0$                             | -0.002317                 | 0.001832                        | -1.264146         | 0.2062    |  |  |  |
|                                   | Variance                  | Equation                        |                   |           |  |  |  |
| ω                                 | 0.000217                  | 0.000217 0.000258 0.839796      |                   |           |  |  |  |
| α                                 | 0.975742                  | 0.035287                        | 0.035287 27.65161 |           |  |  |  |
| γ                                 | 0.108229                  | 0.088774                        | 1.219147          | 0.2228    |  |  |  |
| В                                 | 0.355394                  | 0.180016                        | 1.974236          | 0.0484    |  |  |  |
| C(8)                              | 0.014314                  | 0.312227                        | 0.045844          | 0.9634    |  |  |  |
| R-squared                         | 0.083920                  | Mean dependent                  | t var             | -0.001547 |  |  |  |
| Adjusted R-squared                | 0.065224                  | S.D. dependent                  | var               | 0.012416  |  |  |  |
| S.E. of regression                | 0.012004                  | 4 Akaike info criterion -6.1152 |                   |           |  |  |  |
| Sum squared resid                 | 0.014122                  | 2 Schwarz criterion -5.90814    |                   |           |  |  |  |
| Log likelihood                    | 316.8217                  | Hannan-Quinn criter6.03142      |                   |           |  |  |  |
| Durbin-Watson stat                | 1.633939                  |                                 |                   |           |  |  |  |

#### **Table 3. EGARCH Estimation**

#### 4.4. Autocorrelation Test for Daily ASI

For more authentications, the researchers proceeded to verifying with Autocorrelation test which is a special correlation test that examines the relationship between successive values of the same variable and not necessarily between two or more variables. The test is shown in table 4 below;

Table 4 below depicts the autocorrelation test for daily ASI. It revealed that the individual autocorrelation (AC) at different lags from 1-36 and the associated probability values suggest that successive autocorrelation of the prices are insignificant. This further suggest non rejection no autocorrelation. That means the researchers should not be bordered about presence of autocorrelation.

| Autocorrelation | Partial Correlation |    | AC     | PAC    | Q-Stat | Prob* |
|-----------------|---------------------|----|--------|--------|--------|-------|
| · *             | . *                 | 1  | 0.092  | 0.092  | 0.8836 | 0.347 |
| . *             | . *                 | 2  | 0.147  | 0.140  | 3.1523 | 0.207 |
|                 |                     | 3  | 0.020  | -0.004 | 3.1969 | 0.362 |
|                 | * .                 | 4  | -0.059 | -0.084 | 3.5750 | 0.467 |
| . *             | . *                 | 5  | 0.116  | 0.130  | 5.0375 | 0.411 |
|                 |                     | 6  | 0.003  | 0.004  | 5.0387 | 0.539 |
| . *             |                     | 7  | 0.100  | 0.067  | 6.1543 | 0.522 |
|                 |                     | 8  | 0.014  | -0.009 | 6.1757 | 0.628 |
| . *             | . *                 | 9  | 0.124  | 0.125  | 7.9275 | 0.541 |
| . *             | . *                 | 10 | 0.122  | 0.092  | 9.6319 | 0.473 |
| . *             | . *                 | 11 | 0.155  | 0.125  | 12.396 | 0.335 |
|                 |                     | 12 | 0.066  | -0.003 | 12.909 | 0.376 |
| . *             | . *                 | 13 | 0.092  | 0.080  | 13.911 | 0.380 |
| . *             | . *                 | 14 | 0.112  | 0.087  | 15.401 | 0.351 |
| . *             | . *                 | 15 | 0.095  | 0.075  | 16.496 | 0.350 |
| *               |                     | 16 | 0.117  | 0.049  | 18,181 | 0.313 |
|                 |                     | 17 | 0.035  | 0.009  | 18.336 | 0.368 |
|                 |                     | 18 | 0.027  | -0.020 | 18 430 | 0.200 |
| *               | *                   | 19 | -0.090 | -0.128 | 19.430 | 0.429 |
| 1• 1<br>1 1     | · · ·               | 20 | 0.000  | -0.128 | 10.447 | 0.429 |
| ·I•             | ·I·                 | 20 | -0.009 | -0.051 | 17.437 | 0.492 |

Table 4. Autocorrelation Test for Daily ASI

| . . | . . | 21 | 0.008  | -0.026 | 19.464 | 0.555 |
|-----|-----|----|--------|--------|--------|-------|
| . . | * . | 22 | -0.054 | -0.117 | 19.848 | 0.593 |
| . . | . . | 23 | 0.023  | -0.056 | 19.920 | 0.647 |
| * . | * . | 24 | -0.106 | -0.157 | 21.435 | 0.613 |
| . . | . . | 25 | 0.053  | -0.006 | 21.823 | 0.646 |
| . * | . * | 26 | 0.153  | 0.136  | 25.065 | 0.515 |
| . . | * . | 27 | -0.026 | -0.096 | 25.160 | 0.565 |
| . . | . . | 28 | 0.066  | 0.009  | 25.775 | 0.585 |
| . . | . . | 29 | -0.042 | 0.021  | 26.032 | 0.624 |
| * . | * . | 30 | -0.132 | -0.120 | 28.581 | 0.540 |
| . . | . * | 31 | 0.067  | 0.107  | 29.247 | 0.556 |
| * . | * . | 32 | -0.135 | -0.086 | 31.980 | 0.468 |
| . . | . * | 33 | 0.042  | 0.092  | 32.253 | 0.504 |
| * . | . . | 34 | -0.113 | -0.057 | 34.236 | 0.456 |
| . . | . . | 35 | -0.011 | 0.060  | 34.256 | 0.504 |
| . . | * . | 36 | -0.058 | -0.075 | 34.796 | 0.526 |
|     |     |    |        |        |        |       |

\*Probabilities may not be valid for this equation specification.

#### 4.5. Heteroscedasticity Check

Table 5 below shows that F-statistic has coefficient of 0.025630, with probability value of 0.8731, which is insignificant at 5%, rejecting the presence of heteroscedasticity of the model, the model is homoscedastic.

#### Table 5: Heteroscedasticity Test: ARCH

| Heteroskedasticity Test: ARCH | I        |                     |        |
|-------------------------------|----------|---------------------|--------|
| F-statistic                   | 0.025630 | Prob. F(1,98)       | 0.8731 |
| Obs*R-squared                 | 0.026146 | Prob. Chi-Square(1) | 0.8715 |

#### 4.6. Normal Distribution Check

Table 6 below shows that the minimum value is -2.815048, while maximum value is 3.127246. The wide gap between the maximum and minimum lend credence to the suspected high volatility of ASI amidst the COVID-19 in Nigeria within the period of the study. Kurtosis is 3.985274, which is greater than 3 indicating leptokkurtic distributions. Leptokurtosis is the tendency of financial asset returns to have distribution that exhibit fat tails and excess peakness at the mean. This shows that big shock of either signs is more likely to be present in the ASI amidst the COVID-19 pandemic. It is important to point out that the skewness is negatively skewed suggesting the distribution has a long left tail. These shows large negative movements in ASI are not normally followed by the same magnitude of positive movement. Finally, Jarque-Bera coefficient is 5.423652 with probability value of 0.066415, implying normal distribution at 5% significant level.



Series: Standardized Residuals Sample 1 101 **Observations 101** Mean -0.051921 Median 0.121904 Maximum 3.127246 Minimum -2.815048Std. Dev. 1.013748 Skewness -0.281968 3.985274 **Kurtosis** Jarque-Bera 5.423652

0.066415

Probability

## V. Conclusion and Recommendations

This study examined the relationship between Volatility and Capital Market Returns amidst Corona Virus Pandemic in Nigeria. After the empirical examinations, the major findings are; volatility is not actually hampering the returns in the capital market returns in Nigeria amidst COVID-19 within the period of this study, though the market volatility is found to be persistent. Again, within the first four months of the pandemic in Nigeria, the news of COVID-19 is not magnifying volatility more than previous volatility in the capital market returns in Nigeria within the period of this study. It was also found that the market exhibit evidence of high persistent volatility clustering and that big shock of either signs are more likely to be present in the ASI amidst the COVID-19 pandemic.

From the empirical results, volatility is found to be insignificantly related to the capital market returns, the researchers; therefore encourage investors to go about their normal business activities in the capital market. Again, since volatility is persistent, the regulatory authority should increase her surveillance role in order to avert perceived doom days as a result of the COVID-19 pandemic.

#### References

- [1]. Arodoye, N.L. (2012). An econometric analysis of the impact of macroeconomic variables on stock prices in Nigeria. VAR approach. *International Review of Business and Social Sciences*, 1(8), 63-77.
- [2]. Barro, R, J Ursua & J Weng (2020). The corona virus and the Great Influenza Pandemic: Lessons from the 'Spanish flu' for the corona virus' potential effects on mortality and economic activity. *NBER Working Paper, no* 26866.
- [3]. Black, F. (1976). Studies of stock market volatility changes. Proceedings of the American Statistical Association, Business and economics Section. 177-181.
- [4]. Boissay, F. & Ruhgcharoenkitkkul, P. (2020). Macroeconomic effects of COVID-19: An early review. Bank of International Settlement (BIS) Bulletin, No. 7, 1-7
- [5]. Bollerslev, T. (1986). Generalized autoregressive conditional heteroscedasticity. Journal of Econometrics. 31:307-327.
- [6]. Caiado, J. (2004). Modeling and forecasting the volatility of the Portuguese stock, IndexPSI-2, *Munich Personal Repec Archive (MPRA)* Paper No.2304.posted 07.
- [7]. Christie, A.A. (1982). The stochastic behavior of common stock variance-*Financial Economics*, 10(4), 407-423. value, leverage and interest rate effects. Journal of
- [8]. Correia, S, S Luck & E Verner (2020). Pandemics depress the economy, public health interventions do not: Evidence from the 1918 flu. mimeo. www.researchgate.com
- [9]. Emenike, K.O. & Aleke, S.F (2012). Modeling asymmetric volatility in the Nigerian stock exchange. *European Journal of Business* and Management. 4(12).
- [10]. Emenike, K.O. (2009). Modeling stock returns volatility in Nigeria using and Administration. 3(1):8-15. GARCH models. African Journal of Management
- [11]. Engle, R.F. & Granger, C.J. (1987). Co-integration and error correlation: Representation. estimation and testing. *Journal of Econometrics*, 55:251-276.
- [12]. Engle, R.F.(1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. Inflation. *Journal Econometrics*. 50:987-1008.
- [13]. Fama, E. (1965). The behavior of stock market prices. Journal of Business. 38:34-105.
- [14]. Forson, J. & Janrattanagul, J. (2014). Selected macroeconomic variables and stock market movements: Evidence from Thailand. *Contemporary Economics*, 8(2), 154-174.
- [15]. Frimpong, J. M. & Oteng-Abayie, E. F. (2006). Modeling and forecasting GARCH models. America Journal of Applied Sciences. 3(10): 2042-2048.
- [16]. Gourinchas, P (2020). Flattening pandemic and recession curves. mimeo. www.researchgate.com
- [17]. Ilahi, I., Ali, M., Jamil, R.A. (2015). Impact of macroeconomic variables and stock market return. *Electronic copy available at http://ssrn.com/abstract=2583301. Retrieved 06/04/2020.*
- [18]. Jordà, O., Singh, S. & Taylor, A (2020). Longer-run economic consequences of pandemics, unpublished manuscript, March. *www.researchgate.com*
- [19]. Karolyi, G.A. (2001). Why stock return volatility in the long run. 1961-2005. Economic and Political Weekly, May. 1976-1802.
- [20]. Nairametrics (2020). https://nairametrics.com/2020/07/13/covid-19-update-in-nigeria/. Retrieved on July 14, 2020
- [21]. NCDC (2020). www.Covid 19.ncdc.gov.ng. Retrieved on July 14, 2020
- [22]. Nelson, D. (1991). Conditional heteroscedasticity in asset returns: a new approach. Journal of Econometrics, 59(2), 347-370.
- [23]. OECD (2020). Evaluating the initial impact of Covid containment measures on activity", 27 March. www.researchgate.com
- [24]. Okafor, F.O.(1983). Investment decisions: Evaluation of projects and securities. London: Cassel.
- [25]. Okpara G.C. (2012). Volatility modeling and the Nigerian stock return relationship in EGARCH-in-mean framework. *International Journal of Current Research*. 3(8):176-185.
- [26]. Poterba, J. M. (2000). Stock market wealth and consumption. Journal of Economic Perspectives.14(2):99-118.
- [27]. Saez, E & G Zucman (2020). Keeping business alive: the government will pay, Social Europe. www.researchgate.com
- [28]. UNCTAD (2020): "Global trade impact of the coronavirus (Covid-19) epidemic", 4 March. www.googlescholar.cm
- [29]. United Nations. (2020, April, 17). Everyone included: Social impact of COVID-19. https://www.un.org/development/desa/dspd/everyone-included-covid-19.html. Retrieved May, 20, 2020
- [30]. Warwick, M. & Roshen, F. (2020). The global macroeconomic impacts of COVID-19: Seven scenarios. *Centre for Applied Macroeconomic Analysis (CAMA) Working Paper 19/2020, Australia National University*, 1-43
- [31]. World Health Organization. (2020, March 10). Naming the corona virus disease (COVID-19) and the virus that causes it. *Retrieved from WHO Technical Guidance Coronavirus-2020*. Retrieved May, 20, 202 www.researchgate.com
- [32]. Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., & Tan, W (2020). A novel corona virus from patients with pneumonia in China, 2019. N Engl J Med, 727-733.

## Appendix

 Table 1: Confirmed Cases, Active Cases, Critical Cases, New Cases, New Death, Total Death and Total

 Recovery

|             |                    |              | <u> </u>        | ТУ            |                   |                 |                |
|-------------|--------------------|--------------|-----------------|---------------|-------------------|-----------------|----------------|
| Date        | Confirme<br>d case | New<br>cases | Total<br>deaths | New<br>deaths | Total<br>recovery | Active<br>cases | Critical cases |
| 28-Feb-20   | 1                  | 1            | 0               | 0             | 0                 | 1               | 0              |
| 10-Mar-20   | 2                  | 0            | 0               | 0             | 0                 | 2               | 0              |
| 17-Mar-20   | 3                  | 1            | 0               | 0             | 0                 | 3               | 0              |
| 18-Mar-20   | 8                  | 5            | 0               | 0             | 1                 | 7               | 0              |
| 20 Mar 20   | 12                 | 1            | 0               | 0             | 1                 | 11              | 0              |
| 20-1v1a1-20 | 12                 | 4            | 0               | 0             | 1                 | 21              | 0              |
| 21-Mar-20   | 22                 | 10           | 0               | 0             | 1                 | 21              | 0              |
| 22-Mar-20   | 30                 | 8            | 0               | 0             | 2                 | 28              | 0              |
| 23-Mar-20   | 40                 | 10           | 1               | 1             | 2                 | 37              | 0              |
| 24-Mar-20   | 44                 | 4            | 1               | 0             | 2                 | 41              | 0              |
| 25-Mar-20   | 51                 | 7            | 1               | 0             | 2                 | 48              | 0              |
| 26-Mar-20   | 65                 | 14           | 1               | 0             | 2                 | 62              | 0              |
| 27-Mar-20   | 70                 | 5            | 1               | 0             | 3                 | 66              | 0              |
| 28-Mar-20   | 89                 | 19           | 1               | 0             | 3                 | 85              | 0              |
| 20 Mar 20   | 111                | 22           | 1               | 0             | 3                 | 107             | 0              |
| 29-Mar 20   | 111                | 22           | 2               | 1             | 3                 | 107             | 0              |
| 30-Mar-20   | 131                | 20           | 2               | 1             | 0                 | 121             | 0              |
| 31-Mar-20   | 139                | 8            | 2               | 0             | 9                 | 128             | 0              |
| I-Apr-20    | 174                | 35           | 2               | 0             | 9                 | 163             | 0              |
| 2-Apr-20    | 184                | 10           | 2               | 0             | 20                | 162             | 0              |
| 3-Apr-20    | 209                | 25           | 4               | 2             | 25                | 180             | 0              |
| 4-Apr-20    | 214                | 5            | 4               | 0             | 25                | 185             | 0              |
| 5-Apr-20    | 232                | 18           | 5               | 1             | 33                | 194             | 2              |
| 6-Apr-20    | 238                | 6            | 5               | 0             | 35                | 198             | 2              |
| 7-Apr-20    | 254                | 16           | 6               | 1             | 44                | 204             | 2              |
| 8-Apr-20    | 274                | 22           | 6               | 0             | 44                | 226             | 2              |
| 9-Apr-20    | 288                | 14           | 7               | 1             | 51                | 230             | 2              |
| 10 Apr 20   | 200                | 17           | 7               | 0             | 59                | 230             | 2              |
| 10-Api-20   | 303                | 17           | /               | 0             | 30                | 240             | 2              |
| 11-Apr-20   | 318                | 13           | 10              | 3             | 70                | 238             | 2              |
| 12-Apr-20   | 323                | 5            | 10              | 0             | 85                | 228             | 2              |
| 13-Apr-20   | 343                | 20           | 10              | 0             | 91                | 242             | 2              |
| 14-Apr-20   | 373                | 30           | 11              | 1             | 99                | 263             | 2              |
| 15-Apr-20   | 407                | 34           | 12              | 1             | 128               | 267             | 2              |
| 16-Apr-20   | 442                | 35           | 13              | 1             | 152               | 277             | 2              |
| 17-Apr-20   | 493                | 51           | 18              | 4             | 159               | 317             | 2              |
| 18-Apr-20   | 541                | 48           | 20              | 2             | 166               | 356             | 2              |
| 19-Apr-20   | 627                | 86           | 22              | 2             | 170               | 436             | 2              |
| 20-Apr-20   | 665                | 38           | 23              | 1             | 188               | 466             | 2              |
| 21-Apr-20   | 782                | 117          | 26              | 3             | 197               | 560             | 2              |
| 22-Apr-20   | 873                | 91           | 20              | 3             | 197               | 648             | 2              |
| 22-Api-20   | 091                | 109          | 23              | 2             | 197               | 752             | 2              |
| 25-Api-20   | 981                | 108          | 32              | 5             | 197               | 733             | 2              |
| 24-Apr-20   | 1095               | 114          | 33              | 1             | 208               | 855             | 2              |
| 25-Apr-20   | 1182               | 8/           | 36              | 3             | 222               | 925             | 2              |
| 26-Apr-20   | 1273               | 91           | 41              | 5             | 239               | 994             | 2              |
| 27-Apr-20   | 1337               | 64           | 41              | 0             | 255               | 994             | 2              |
| 28-Apr-20   | 1532               | 195          | 45              | 4             | 255               | 1232            | 2              |
| 29-Apr-20   | 1728               | 196          | 52              | 7             | 307               | 1369            | 2              |
| 30-Apr-20   | 1932               | 204          | 59              | 7             | 317               | 1556            | 2              |
| 1-May-20    | 2170               | 238          | 69              | 10            | 351               | 1751            | 2              |
| 2-May-20    | 2388               | 220          | 86              | 17            | 351               | 1952            | 2              |
| 3-Mav-20    | 2558               | 170          | 88              | 2             | 400               | 2070            | 2              |
| 4-May-20    | 2802               | 245          | 94              | 6             | 417               | 2291            | 2              |
| 5-May 20    | 2002               | 1/12         | 00              | 5             | /121              | 2271            | 1              |
| 6 May 20    | 2950               | 140          | 104             | 5             | 524               | 2510            | 1              |
| 0-iviay-20  | 3143               | 195          | 104             | 5             | 554               | 2307            | 1              |
| 7-May-20    | 3526               | 381          | 108             | 4             | 601               | 2818            | 4              |
| 8-May-20    | 3912               | 386          | 118             | 10            | 679               | 3115            | 4              |
| 9-May-20    | 4151               | 239          | 127             | 11            | 745               | 3278            | 4              |
| 10-May-20   | 4399               | 248          | 142             | 17            | 778               | 3479            | 4              |
| 11-May-20   | 4641               | 242          | 152             | 10            | 902               | 3589            | 4              |
| 12-May-20   | 4787               | 146          | 158             | 6             | 959               | 3670            | 4              |
| 13-May-20   | 4971               | 184          | 164             | 6             | 1070              | 3737            | 4              |
| 14-May-20   | 5162               | 193          | 168             | 3             | 1180              | 3815            | 4              |
| 15-May-20   | 5445               | 288          | 171             | 3             | 1320              | 3954            | 4              |
| 16-May-20   | 5621               | 176          | 176             | 5             | 1472              | 3973            | 7              |
| 17-May 20   | 5050               | 388          | 182             | 6             | 1504              | /183            | 7              |
| 17-1v1ay-20 | 6175               | 216          | 102             | 0             | 1594              | 4103            | 7              |
| 18-May-20   | 01/5               | 210          | 191             | 9             | 1044              | 4340            | /              |

| 19-May-20 | 6401  | 226 | 192 | 1  | 1734 | 4475  | 7 |
|-----------|-------|-----|-----|----|------|-------|---|
| 20-May-20 | 6677  | 284 | 200 | 8  | 1840 | 4637  | 7 |
| 21-May-20 | 7016  | 339 | 211 | 11 | 1907 | 4898  | 7 |
| 22-May-20 | 7261  | 245 | 221 | 10 | 2007 | 5033  | 7 |
| 23-May-20 | 7526  | 265 | 221 | 0  | 2174 | 5131  | 7 |
| 24-May-20 | 7839  | 313 | 226 | 5  | 2263 | 5360  | 7 |
| 25-May-20 | 8068  | 229 | 233 | 7  | 2311 | 5524  | 7 |
| 26-May-20 | 8344  | 276 | 249 | 16 | 2385 | 5710  | 7 |
| 27-May-20 | 8733  | 389 | 254 | 5  | 2501 | 5978  | 7 |
| 28-May-20 | 8915  | 182 | 259 | 5  | 2592 | 6064  | 7 |
| 29-May-20 | 9302  | 387 | 261 | 2  | 2697 | 6344  | 7 |
| 30-May-20 | 9855  | 553 | 273 | 12 | 2856 | 6726  | 7 |
| 31-May-20 | 10162 | 307 | 287 | 14 | 3007 | 6868  | 7 |
| 1-Jun-20  | 10578 | 416 | 299 | 12 | 3122 | 7157  | 9 |
| 2-Jun-20  | 10819 | 241 | 314 | 15 | 3239 | 7266  | 7 |
| 3-Jun-20  | 11166 | 348 | 315 | 1  | 3329 | 7522  | 7 |
| 4-Jun-20  | 11516 | 350 | 323 | 8  | 3535 | 7646  | 7 |
| 5-Jun-20  | 11844 | 328 | 333 | 10 | 3696 | 7815  | 7 |
| 6-Jun-20  | 12233 | 389 | 342 | 9  | 3826 | 8065  | 7 |
| 7-Jun-20  | 12486 | 260 | 354 | 12 | 3959 | 8173  | 7 |
| 8-Jun-20  | 12801 | 315 | 361 | 7  | 4040 | 8400  | 7 |
| 9-Jun-20  | 13464 | 663 | 365 | 4  | 4206 | 8893  | 7 |
| 10-Jun-20 | 13873 | 409 | 382 | 17 | 4351 | 9140  | 7 |
| 11-Jun-20 | 14554 | 681 | 387 | 5  | 4494 | 9673  | 7 |
| 12-Jun-20 | 15181 | 627 | 399 | 12 | 4891 | 9891  | 7 |
| 13-Jun-20 | 15682 | 501 | 407 | 8  | 5101 | 10174 | 7 |
| 14-Jun-20 | 16085 | 403 | 420 | 13 | 5220 | 10445 | 7 |
| 15-Jun-20 | 16658 | 573 | 424 | 4  | 5349 | 10885 | 7 |
| 16-Jun-20 | 17148 | 490 | 455 | 31 | 5623 | 11070 | 7 |
| 17-Jun-20 | 17735 | 587 | 469 | 14 | 5967 | 11299 | 7 |
| 18-Jun-20 | 18480 | 745 | 475 | 6  | 6307 | 11698 | 7 |
| 19-Jun-20 | 19147 | 667 | 487 | 12 | 6581 | 12079 | 7 |
| 20-Jun-20 | 19808 | 661 | 506 | 19 | 6718 | 12584 | 7 |
| 21-Jun-20 | 20242 | 436 | 518 | 12 | 6879 | 12847 | 7 |
| 22-Jun-20 | 20919 | 675 | 525 | 7  | 7109 | 13285 | 7 |
| 23-Jun-20 | 21371 | 452 | 533 | 8  | 7338 | 13500 | 7 |
| 24-Jun-20 | 22020 | 649 | 542 | 9  | 7613 | 13865 | 7 |
| 25-Jun-20 | 22614 | 594 | 549 | 7  | 7822 | 14243 | 7 |
| 26-Jun-20 | 23298 | 684 | 554 | 5  | 8253 | 14491 | 7 |
| 27-Jun-20 | 24077 | 779 | 558 | 4  | 8625 | 14894 | 7 |
| 28-Jun-20 | 24867 | 490 | 565 | 7  | 9007 | 14995 | 7 |
| 29-Jun-20 | 25133 | 566 | 573 | 8  | 9402 | 15158 | 7 |
| 30-Jun-20 | 25694 | 561 | 590 | 17 | 9746 | 15358 | 7 |

Volatility And Capital Market Returns Amidst Corona Virus Pandemic: E-Garch Evidence ...

Source: NCDC, July 1, 2020.



Fig 1: Trend of Confirmed Cases, Active Cases, Critical Cases, New Cases, New Death, Total Death and Total Recovery

Ogbonna, Udochukwu Godfrey, et. al. "Volatility and Capital Market Returns Amidst Corona Virus Pandemic: E-Garch Evidence From Nigeria." *IOSR Journal of Economics and Finance (IOSR-JEF)*, 11(4), 2020, pp. 25-34.

DOI: 10.9790/5933-1104052534