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Abstract 
There are severaldifferentapproaches of assessingrisk in the financialliterature. Regulation has renderedita 

function of Value-at-Risk. As a reminder of the inadequacy of existingapproaches, the recentcrisis has prompted 

us to developtoolsthatprovide more detailon losses and gains. In recentyears, modern statisticshave developed a 

series of probabilistictoolsthat are nowbeingusedexplicitlyin finance. This isin particularthe case of the use of 

the third- and fourth-ordermoments in the calculation of Valut-at-Risk in studyingleptokurticity or non-

gaussianity, and the asymmetry of the distribution of returns. The purpose of thisworkis to 

extendthismethodology to forms of financial assets like CAC40 companies.  

The analysis of regulations and theirpost-crisismodification helps to identify the issues at stake and the difficulty 

of riskassessment. The presentation of the concept of third- and fourth-order moments exhibitstheirproperties 

and shows thattheyprovide more information about the distribution tailsthan the classic moments (mean and 

variance). The distribution of returns for thesesecurities shows thatthisis a case of financial assets 
whosebehaviouris far from a normal distribution and thereforerequiresspecial techniques. Finally, 

empiricalanalysis of financial stocks derivedfrom the CAC40 over a long period shows the benefit of the third- 

and fourth-ordermoments in calibrating the laws and constructing more robustestimators of quantiles 

thanthoseconstructedusing normal distribution or historical distribution. 
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I. Introduction 
Financial theoryinvolves the study of the prices of financialgoods and, more importantly, their temporal 

evolution. The financial model isgenerallybased on a representation of the prices of financial assets (or interest 

rate levels) (Mahamat, 2017, 2018). 

Suchrepresentationmaybepursued in order to betterunderstandfinancialmarkets or to improvetools for 

improvingfinancialmanagement:risk management, asset allocation, development of new financialproducts. 

Financial modeling isoften a balancebetweenbeing in line withfinancialmarketexperience and 

beingeasy to use.A model thataims to generate all the statisticalcharacteristics of the observations usually leads 

to a complicated model thatisoftendifficult to use, as theoreticalcalculations are typicallydifficult to carry 

out.Conversely, oversimplifyingmodelsdefinitelyallows us to completeseveralcalculations, in our case 
wewillsimulate the Value-at-Risk based on the Mont Carlo simulation, thencalculate the Gaussian Value-at-Risk 

withdifferentquantile levels, and thenfinallywe move on to the Value-at-Risk basedon approaches (Cornish 

Fisher, Gram Charlier, and Jonson) thattakeintoaccount the third and fourthorder moments of the distribution. 

Weanalyze the main statisticalproperties of the financialseries and propose a consistent modeling of most of 

theseproperties.   

First used in insurance (ruin concept) and then in trading rooms (JP Morgan - RiskMetrics), Value-at-

Risk (VaR) has played a very important role in the analysis of risk and financialreserves. The complexity of 

market instruments and their incorporation into more complicated portfolios (arbitrage, hedges, multiple asset 

classes) stimulatedresearch to improvethismethod (RoseléChim and Radjou, 2020).Havingbecomeessential for 

institutions withcomplexactivities, the regulator has made itthe core of lossassessmentmodels and profiles. 

                                                             
1 Value-at-Risk : This researchissupported by the laboratorycalled MINEA UR 7485 in the framework of the 

team BETA EMADD BIO of the University of French Guyana, Cayenne. 
2 HDR University of Paris 1-Panthéon Sorbonne, Teacher-Researcher at the University of French Guyana. 
3Doctor Teacher-Researcher at the University of French Guyana, DFR of Economics and Management. 
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VaRwascriticized for itsshortcomings (variety of resultsdepending on the lawsused, verydifferentrisk 

information depending on the confidence levelused, non-additivity). Moreover, the 

regulationssoonimposedbacktesting and acknowledgedtheirlack of robustness as a penalizing factor.  

The crisishighlighted new or insufficientlyformalizedrisks (liquidity, model risk, endogeneity, 

systemicrisk). It called for a betterunderstanding of the behaviour of assets in the extremes (maximum loss or 

gain).  

Techniques developedfromorderstatistics in order to buildestimatorsthatbettertakeintoaccount the 
extremes of distributions gave rise to the concept of third- and fourth-ordermoments. Their usage has led to 

more effective outcomes. In particular, this usage provesuseful for the estimation of the parametricVaR, 

whichwouldprovide more detail on the realization of gains and losses. 

In thispaperwe use moments from distributions thatweapply to the return of CAC 40: the first part 

examines the stylizedfactsthatallow us to identify the problem of non-normality of autocorrelation, or volatility. 

The second part isdevoted to the presentation of VaR, and finally the last part is the subject of a study of the 

modelling of the twoseries of CAC 40 prices for a periodfrom 02/January/2008 to 28/December/2013 to 

whichweassociateseveralmodelling and estimates of VaR, and itsempiricalapplication; and thenwe end with the 

Backtest. 

 

1 Value-at-Risk  
By definition, VaRis the maximum lossthat a portfolio manager can incurwith a givenprobability over a 

certain period of time. Assumingthatthisprobabilityis 95%, the errormargin for this maximum lossisonly 5%. If 

the distribution of cash flows in a portfolio obeys a normal distribution. Let us also assume that the random 

variable X represents the value of the portfolio, with X~N (μ, σ2). The random variable X can thusberewritten in 

terms of the standard normal variable ε, ε ~ N(0,1) : 

               Pr(   < VaR) = p                                                             (1) 

With    = Ln(      /  ) the return of the asset at horizon h, and     the value of the index at time t. By 

construction, this VaR is a generally negative number. 

∅(P) is the quantile function of the reducedcentred normal distribution ; with the known values of p and h, the 
VaR can alsobewrittenas: 

VaR =    + σ  ∅  (P)           (2) 

Where Où       σ  are the level of quantile and the standard deviation of returns at horizon h, respectively, 

and    ∅  (P) is the quantile function of the reducedcentred normal distribution. 

The value of VaRreflects the amount of lossthat the investorcould not exceed a certain probability over a well-

defined time horizon. This approximation does not takeintoaccountextremeeventsthatcouldoccur and 

thatcouldresult in more severelosses. This leads the investor to makebiaseddecisionsbased on VaR by 

underestimatinglosses. Nevertheless, ES avoidsthisVaRshortcoming. Indeed, 

ittakesintoaccountextremeeventsthatcouldoccur. It isdefined as the average of portfolio lossesthat are above the 

VaRlevel. 

As mentionedabove, financial portfolios can have returnswithasymmetric and leptokurtic distributions. In most 

cases, the distribution isalsounknown and varies  over a different horizon. In thisstudy, weexamined the 
performance of the Gram-Charlier, Cornish-Fisher, and Johnson, as approachesthat use all of the first four 

moments of returns, and provideapproximatequantitiesrelated to the unknown distribution of a portfolio's return. 

For the VaR formula (1), thisapproximatequantitywillbe for ∅  (P), the quantile function of the distribution of 

returns. This partial expectation can becalculatedusing Gram-Charlier, Cornish-Fisher and Johnson 

approximations of the truedensityfunction. The followingsubsectionsdiscusses how to obtaintheseapproximate 

values for each of the three cases considered. 

 

1.1 Gram-Charlier 

A first approach to VaR and ES calculationwithequations (1) and (2) is the use of the approximate 

Gram-Charlier densitygiven in the Appendix. 

The VaR formula in equation (1) requires the quantile function for the approximate Gram-Charlier 

density. This quantity can beobtainedwith the distribution function for the approximate Gram-Charlier density. 
This distribution function can thenbeinvertednumerically to calculate the VaR. The expression of the 

distribution functionisdetailed in the appendices, and the Gram-Charlier approximation isgivenby: 

∅  ( P;       = ∅ -
  

 
            

      

  
[                     (3) 

Where∅   ( z ;       =    
  

 
        

      

  
              (z) 

Where∅  and    are, respectively, the standard normal density and distribution function evaluated at k,  the   
      is the skewness coefficient and           is the kurtosis coefficient.  
The Gram-Charlier VaRisthencalculated as follows: 
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     =   + σ ∅  
               (4) 

 

2.1 Cornish Fisher                                                  
A second approach to VaR and ES usingequations (1) and (2) isproduced by the Cornish-Fisher 

approach (Zangari)[1996]). This approachprovides a form of approximation based on the known quantile 

functionneeded to calculateVaR, with the values of the knownskewness and flattening coefficients. The 

Cornish-Fisher approximation isthenwritten as follows: 

      
  
   

 
    

  
     
  

        
   

     
  

   
 
 

In thisexpression,     is the percentile corrected for the threshold distribution  ,     =   
       where  is the 

quantile level,    
     is the quantile function of the reducedcentered normal distribution,   is the kurtosis 

coefficient and   is the skewness coefficient. Usingthis quantile function, the Cornish-Fisher 
VaRisthenwrittenas: 

         μ      
  
   

 
   

  
     
  

       
   

     
  

  
  σ 

Where μ and σ are the mean and standard deviation, respectively.  

Or it can bewrittenas:         μ    σ 

For distributions of skewnessbelowzero or negative and kurtosis greaterthan 3, the VaRobtainedisshiftedwith 

respect to GaussianVaR and thereforeallows for deviationsfrom "normality" to betakenintoaccount. 

Nevertheless, by construction, thisVaRcorrectlyrepresents the risk if    isaroundzero, and    is close to 3. If 
thesetwo conditions are not satisfied, the Cornish-Fisher approximation is no longer appropriate (Lhabitant) 

[2004], and othermethodsshouldbeused.  

The main goal of thisstudyis to find a methodthatis compatible with the problem of leptocurtity and/or 

asymmetricyield distribution.  

However, itis possible to numericallycalculatethisquantity. This approachrequiresnumericallyreversing the 

Cornish-Fisher approximation to a dichotomyprocedure in order to obtain a probability close to the quantile 

value.  

As with the approximate Gram-Charlier density, the approximate quantile functionsgenerated by the Cornish-

Fisher approach are not alwaysdesirableproperties. The functiongeneratedis not always a monotonicfunction for 

all pairs of asymmetry and flattening. Outside of this set, Cornish-Fisher expansion provides non-monotonic 

quantiles either in the tail of the distributions. 

 

3.1 Johnson'sapproach 

A thirdapproach to VaR and ES calculatedwithequations (1) and (2) is the Johnson density system. 

This methodologypresented by Simonato (2010) allows the first four moments to beused as the main input in a 

VaR model. The requiredsteps for VaRcalculationsispresented . 

Consider a continuousrandom variable z with an unknown distribution thatneeds to beapproximated. 

Johnson (1949) proposes a set of "normalized" translations. Theseallow the transformation of the continuous 

variable z into a standard normal variable y and has the followinggeneralform: 

        
   

 
  

Where a and b are shapeparameters, c is a location parameter, d is a scaleparameter, and g(.) is a 

functionwhoseshapedefines the four families of Johnson's system distributions.  

 (μ) = 

 
 
 

 
 

   μ 

   μ   μ    

    
μ

  μ
  

μ

  

They correspond to the log-normal family, the unboundedfamily, the boundedfamily and the normal family. 

Thus, the process of using the Johnson system thuscomes down to defining the values of a, b, c and d that are 
associatedwith the moments of the distribution. 

Hill et al (1976) proposed an algorithmthatallows us to choose the appropriatefamily (the form of the function 

g(.)) and the values of the parametersrequired to approximatethisunknown distribution, when the first four 

moments of the function are known. 

When the parameters are determined in the mannerpresentedabove, the Johnson random variable can 

beexpressed as the inverse of the normalized translation presentedabove: 

          
   

 
 , 
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      :      μ    

 μ

  μ    μ   

       μ 
μ

  

Which in order correspond to the log-normal family, the unboundedfamily, the boundedfamily and the normal 

family. 

The quantitiesrequired for the VaR and ES formulas are obtainedfrom the skewness coefficient and the 

flattening coefficient of the standardizedyield distribution. Using a mean of zero, a standard deviation of one, 

and the desiredskewness and flattening coefficients within the Hill algorithm, wefind the values of parameters a, 

b, c, and d. 

Once this first stepiscompleted, itisthen possible to measure the risk of this distribution. 

The distribution quantitiesrelated to the calculation of VaR are obtained by calculating the quantile par function: 

  
                       

  
       

 
  

 

Where  
     is the inverse standard normal quantile function of a random variable valued at p. The VaR is then 

defined as: 

      μ
 
  σ     

              

 

2 Empirical Application and Monte Carlo Simulation 

Weillustrate the usefulness of takingintoaccountthe third- and fourthordermoments in 

calculatingVaRfrom the series of Total Et Bouygues assets over a dailyperiodfrom 02/01/2008 to 28/12/2013, 

thatis, 1563 observations. The indices include the stylizedfacts as defined by Cont(2000) withpricevolatility and 

non-stationarity. Analyses on the stationarypriceseriesrevealothercharacteristics of financialseries: no auto-

correlation of returns but auto-correlation of returnssquared, asymmetry and leptokurticity of the distribution of 
returns, and volatility clusters. In addition to highlighting ARCH effects, GARCH's application of the BDS test 

rejects the hypothesis of linear structures. 

 

Descriptive analyses and preliminary tests 

Charts 1 and 2 describe total and Bouygues price trends. They show a non-stationarityconfirmed by 

unit root tests. To station ourseries, we use the first differences in the log prices, which are approximations of 

the financialreturns of ourselectedsecurities.  

 

2.1 Share performance during the studyperiod 

Assets under management experienced a sharpdeclinefollowing the 2008 crisis. This decline, the 

largesteverobserved, is the result of a combination of negative performance, unitholderdisinvestments and unit 
liquidations. 

 

Figure 1 - Evolution of TOTAL and BOUYGUES prices 

. 
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Convincedthat fluctuations in asset pricesconsist of a global trend and an asset-specific factor itself, 

ithedgesits portfolios by acquiringundervalued assets and sellingovervalued assets.The descriptive statistics in 

Tables 1 and 2 indicatethatreturns are volatile, leptokurtic and asymmetric: the distributions of returns are not 

Gaussian distributions. The shortcomings of linearmodels lead us to consider a non-linearapproach to the 

process of generating return series. To explainthis option, we use tests thatallow us to determinewhether a 

seriesisi.i.d.Theresults of the tests are given in the appendices for different epsilon values and for different 

dimensions. 
 

TOTAL: descriptive daily performance statistics 
Average 0.03527903 

 Standard deviation 0.9996982 

Min -1 

Max  1 

Skewness -0.070602 

Kurtosis 1.004985 

Autocorrélation 3.11% 

Autocorrélation squared 21.12% 

Jarque–Bera (p-value) 2.2e-16% 

Ljung–Box (p-value)      0.3486 % 

Ljung–Box squared returns (p-value) 0.0% 

                                       Table 1-Statistics Security description TOTAL 
 

BOUYGUES: descriptive statistics of daily performance 
Average -0.000420461 

 Standard deviation 0.02478897 

Min -0.1287917 

Max 0.1566574 

Skewness 0.4575874 

Kurtosis 8.315181 

Autocorrélation 3.11% 

Autocorrelationsquared 21.2% 

Jarque–Bera (p-value) 2.2e-16% 

Ljung–Box (p-value)      0.1559 % 

Ljung–Box squared returns (p-value) 2.2e-16% 

Table 2-Statistics Title description BOUYGUES 

 

Comparing the two indices, wefindthat for the total index, consideration of the function'sthird and 

fourth moments isgreater.Theseresultssuggest the use of the Normal Act in calculatingVaR and the offering of 

lower performance in the riskcalculation of this index. 

 

2.2 Autocorrelation test  
In general, autocorrelationisused to characterizelineardependencies in residualseries (that’s to saytrend- 

and seasonally-adjusted time series). This isbecause trend and season are deterministic components and 

itmakeslittlesense to estimatestatisticalproperties of deterministicquantities. Moreover, if the seriesunderstudy 

has itscharacteristicschanging over time, it can bedifficult to 

estimateitsstatisticalpropertiesbecausethereisusuallyonly one realization of the process, whichis not sufficient to 

make an estimate. But it'sveryhelpful to considerwhat a rawseries' empiricalautocorrelationwith trend and/or 

seasonalitywould look like. 

Autocorrelationfunctions for Bouygues yieldseries : 

It provides information on the variability of the series and on the time links passing through the intermediate 

variables          . 
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Autocorrelationfunctions for the yieldseriesBOUYGUES: 

 
Autocorrelationfunctions for the yieldseries TOTAL  

 
 

The GARCH tests highlight a phenomenon of intermittency in the twoyieldseries and the autocorrelation tests 

confirm the presence of volatility clusters. 

 

2.3 Non-Normality Tests  

The Shapiro-Wilk test and the QQ plot below are used to determinewhether the Total and Bouygues 

sharepricereturnswillsatisfy the assumption of normality. The QQ plot'sdistinctly non-linear pattern helps us to 

ignore the presumption of normality at first glance.Figure 3 - Empirical Quantile of Total and Theoretical Share 

Price 
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Figure 4 - Empirical quantile of the BOUYGUES and Theoretical course 

 

 
 
Empirical quantiles of logarithmicreturnsnormalized by their standard deviation. The plots clearly show the 

convergence of the distribution towards the Gaussian, presented by the solid line, as the scaleincreases. 

 

2.3 Monte Carlo Simulation 

The basic idea of simulation is to build an experimental or simulator device, whichwill "act like" or 

simulate the system of interest in some important aspects in a quick and inexpensiveway. In the context of 

quantitative analysis, simulation ispresented as a means of experimentationbased on a mathematical model.  

Althoughboth simulation and optimization use quantitative models, they are based on verydifferent concepts. 

Monte Carlo simulation VaRconsists of generating possible scenarios on the portfolio by 

consideringmarketfactors. Linsmeier et al. (1996) explained the followingprocedure: First, we must first 

determine or hypothetically pose a specific distribution thatmostadequatelyrepresents the possible changes in 
ourmarketfactors. In thisway, our distribution parameters can beestimated. Once thesesteps are completed, the 

use of a randomgenerator (Excel or Matlab for example) isrequired to obtain a number of hypothetical values N 

of changes in the values of marketfactors. This N numberof values is at least 1000 (10,000 in our case) in order 

to obtainaccurateresults and isoftengreaterthan 10,000. These N hypotheticalresults are used to obtain N values 

in our portfolio fromwhichwe can deductdaily gains and losses. Finally, thesedaily gains or losses, which are 

oftenexpressed as returns, are ordered in the sameway as the VaRand represents the maximum lossfound at 

confidence level 1-α. 

In our case, wewilltherefore assume thatsecuritieslossesoccurrandomly.  A quantification of the loss by 

the Loss Distribution Approachwillbeusedbased on the Normal distribution law. The frequencyisalsomeasured 

by the Normal distribution. The probability of lossisobtained as follows: 

      
 

    
 
 
 

 
 
  μ

 
 
 

 

It seems to us,in the histogrambelow,that the Skewnessis not far fromzero, whichmeansthat the distribution 

ispracticallysymmetrical; and the Kurtosis is not far fromthat of a normal law. We can thereforeapproach the 

distribution of this simulation by a reducedcentered normal distribution.  
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Figure 3 - Histogram of the simulated Monte Carlo series 

 

2.4 Descriptive Statistics of Monte Carlo Simulation 

Focusing on the works of (RoseléChim 2017), afterlooking at the first two moments of the simulation, the 

asymmetry coefficient is the thirdelementof focus in this basic analysis. 

 

 

 

 

 
 

 

 

Table 1-Descriptive Statistics of Monte Carlo Simulation 

 

Assuminga normal distribution, this coefficient isequal to zero. In general, the skewness coefficient of a 

distribution is positive if the right tail, in our simulation case itisequal to 0.012, isalmostsymmetrical.  

The fourth and final moment is the flattening coefficient. This coefficient thusmakesit possible to describe how 

returns are concentratedaround the mean. A high value of the flattening coefficient meansthat more of the 

variance in the data comesfromextremedeviations. It isequal to 3 in this simulation, sowe can saythatour 

simulation isalmostGaussian.  
 

GaussianVaR of the Monte Carlo simulation 

fordifferent confidence levels 

 

 
VaR (1%) -2,349615464 

 
VaR (5%) -1,674526307 

 
VaR (10%) -1,301715877 

 
VaR (90%) 1,27772926 

 
VaR (95%) 1,65053969 

 
VaR (99%) 2,325628847 

 Table 2- VaR of the Monte Carlo simulation 

 

These Values at Risk have a veryspecificmeaning. This meansthat at a confidence level of for example, 

1%, 5%, and 10%, the lossamountsshould not exceed the values shown in Table 2. 

The confidence levels of 90%, 95% and 99% correspond,respectively, to the gains thatshould not beexceeded in 

normal situations.  
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 Histogramme Emperique des 10000 Repetitions 

Min = 78% 

Average = .90% 
SD = .3% 

Summary Statistics 

Max = 99% 

REPETITIONS 10000 

AVERAGE -0,011993309 

STANDARD DEVIATION 1,007595757 

SKEWNESS  0,011836949 

KURTOSIS 3.013229 
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2.5 Empirical Modeling 

In order to takeintoaccount the previouscharacteristics of ouryieldseries, we propose a battery of models by 

differentmethodsthat use the third and fourthordermoments of the yield distribution, namely the Gram Charlier 

method, the Cornish Fisher extension, and the Jonson approach.  

In this section, all results are presentedin tabularform, similar to the previouscase. The tables thusintegrate the 

robustness of the resultsthrough the samemethodology for a given index and a precisewindow.  

 

Quality of fit  

The graphs below show the empirical distribution of returns for each asset, with the normal distribution adjusted 

for the samemeans and standard deviation. 

 

 
 

 
  

On the adjustment of the normal distribution to the distribution of the returns of the two stocks, the 

leptokurticityproblemappearsveryclear ; the shape of the tails of the distributions 

willbestudiedwithdifferentmodels in order to compare the results. 

The results are used to computethe VaR, based on the parametricapproach, and are presented by quantile, for the 

GaussianVaR.Each asset can beconsidered as an example of how the VaRcalculations are performed.  

The 1%, 5% and 10% quantiles are maximum losses at 99%, 95%, and 90%,probabilities, respectively. The 

minus signmeans a loss (leftside of the distribution). On the other hand, the 90%, 95% and 99% quantiles are 

maximum gains at 10%, 0.5%, and 0.1%, probabilities,respectively.Here, the positive value means a gain (right 
part of the distribution).  

 
 

VaR Gaussienne 

 

R.Total 

 

R.Bouygues 

Moyenne 0,000235 0,000102 

Ecart-Type 
0,01823869 0,01577882 

Skewness -0,00358 -7,04535 
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Kurtosis 9,3448668 21,881975 

VaR(1%) -0,04219 -0,03660 

VaR(5%) -0,02976 -0,02585 

VaR(10%) -0,0231 -0,02011 

VaR(90%) 0,023609 0,020324 

VaR(95%) 0,030236 0,0260568 

VaR(99%) 0,042665 0,036809 

Table3:GaussianVaR to 1%, 5%,10%, 90% and to 99% 

 

At the 1%, 5% and 10% thresholds, it can beseenthat the smaller the margin of error, the greater the 

absoluteincrease in VaR (the lossbecomessubstantial).  

At the 90%, 95%, and 99% thresholds, wesee the exact opposite of the previous section, i.e. the higher 

the margin of error, the smaller the gain.   

Nowweattempt to answer the followingquestion: how to have settings richer in information 

andlesssimplifying, using more moments? 

Interestingadvancesappearwith the use of the first four moments. These last points willbedeveloped in 
the rest of this document.  

Approaches to VaRcalculationbased on developments by Cornish-Fisher, Gram Charlier, and Jonson 

aim to modify the multiple associatedwith the normal distribution in order to integrate the third and fourth 

moments of the distribution of returns. Theseapproachesprovide an approximateanalytical expression of the 

quantile of a distribution as a function of its moments.  

By limiting the threeapproachesmentionedabove to its first terms, an analytical expression of 

VaRisobtainedusing the expectation μ, the standard deviation σ, the Skewness and the Kurtosis of returns. 

The tables below show the degrees of asymmetry, the levels of kurtosis, and the 

w_ statisticcalculatedfrom the aboveequations (approximation by Gram Charlier, Cornish-Fisher, and Jonson) 

for the 1%, 5%, 10%, 90%, 95%, and 99% thresholds.  
 

R.Total R.Bouygues 

 Gram  

Charlier 

Cornish 

Fisher 

Jonson Gram 

Charlier 

Cornish 

Fisher 

Jonson 

W (1%) 11,6834 3,77863 0,248642 -225,35 38,3539 0,035762 

W (5%) -7,2532 1,5279 0,17695 -153,55 -6,323 0,0332 

W (10%) -1,2191 0,81887 0,137351 -104,06 -15,228 0,03179 

W (90%) -1,24539 -0,8196 0,1366 -104,701 13,7289 0,02201 

W (95%) -7,260138 -1,52996 0,17619 -102,511 2,27876 0,020602 

W (99%) 11,7668 -3,7838 0,24789 100,137 -48,646 0,01804 

Table 5:Statistics at the thresholds of 1%, 5%, 10%, 90%, 95% and 99%. 

 

As can beseen in the tables, excess kurtosis slightlydominates the asymmetry in the calculation of 

Cornish-Fisher expansion. By using 2.32 (1% threshold) as a multiple in the GaussianVaRequation, the risk of 
these assets isthereforegreatlyunderestimated.   

Wealso note that the statistics (quantile w_ ) of all the thresholds in the Jonson approach are verylowcompared 

to the twopreviousones, explained by the dynamism of thisapproach.    

 

Results and comparisons 

The results are presented by quantiles, for each model. Each asset can beseen as an example of the comparison 

of VaRcalculationsfrom one model to another. 

 

Quantiles of 1%, 5% and 10% 

VaR 

 

1% 

  

5% 

  

10% 

 

  VaR G.C VaRC.F VaR N VaR G.C VaRC.F VaR N VaR G.C VaRC.F 

VaR 

N 

Total -0,212 -0,06 -0,04 -0,13252 -0,02763 -0,029 0,022471 -0,0147 -0,0 

Bouygues -0,555 -0,61 -0,04 24,67103 0,099887 -0,025 16,49001 0,240384 -0,0 

Table 7.1- VaR by modelswith 1%, 5% and 10% quantiles 

 

1%, 5%, and 10% quantiles are maximum losses at 99%, 95%, and 90% Probabilities. The minus signmeans a 

loss (leftside of the distribution). 



ModellingVaR
1
 by the three and four ordering moments ofyield distribution  

DOI: 10.9790/5933-1201020827                             www.iosrjournals.org                                                 18 | Page 

The threemodels have been grouped(Gaussian, Gram Charlier and Cornish Fisher) underdifferentlossthresholds 

in the same table for comparison. 

The estimate of losseswith Gram Charlier VaRisgenerally close to Cornish Fisher VaR. 

GaussianVaRgiveshigherlossesthanCornish Fisher VaR and Gram Charlier VaR, and thisistrue for 

bothsecurities. 

 

Cornish-Fisher VaR leads to findings far awayfromGaussianVaR and overestimateslosses in all situations.The 
differencesbetween the results of the models at the differentthresholds are reduced for securitieswith more or 

lesssymmetrical distributions. 

90%, 95% and 99% quantiles 

For the samereasonas the previous table, but this time we are talking about gains instead of losses.   

The 90%, 95% and 99% quantiles are maximum gains at 10%, 5% and 1% Probabilities. The plus signmeans a 

gain (right part of the distribution). 

 

VaR   90%     95%   

 

99%   

  VaR G.C VaRC.F VaR N VaR G.C VaRC.F VaR N VaR G.C VaRC.F 

VaR 

N 

Total 0,02295 0,0151 0,026 0,13265 0,0281 0,03023 -0,214 0,0692 0,0 

Bouygues 18,1094 -0,216 0,020 25,0964 -0,035 0,02605 -1,579 0,7676 0,0 

 Table 7.2- VaRwith 90%, 95% and 99% quantiles 

 

Again, the Gram Carlier VaR and the Cornich Fisher VaR are close. 

GaussianVaRgiveslower gains thanthoseobtainedwith Gram Carlier VaR, and Cornich Fisher VaR in most 

cases, especially in highlyskewed distributions. 

Cornish Fisher VaRgivesevengreater gains thanthoseestimatedwithGaussianVaR. 

The differences are greater for calculationsperformed at the 99%, 95% and 90% quantile. Same observation on 

the left and right tails of the distribution: the gaps becomewider as they move awayfrom the centre. 

 

Jonson VaR: 1%, 5% and 10% Quantiles 

The 1%, 5% and 10% quantiles are maximum losses at 90%, 95% and 99% Probabilities. The minus signmeans 

a loss (leftside of the distribution). 
The Jonson VaRiscalculatedaccording to the families of the followinglaws: Normal family, Log-Normal family, 

Borne family, and non-Borne family. 

 

 
Table 7.3- Jonson VaRwith 1%, 5% and 10% quantiles 

 

The Jonson VaRcalculatedaccording to the log-normal family and the Cornish Fisher VaR are close. 

The Jonson VaRwith the Borne familyresults in higher gains than the Jonson VaRwith the Non-Borne family, in 

most cases. Generally, the results are closer in the cases of the Jonson VaRwith the Borne family and the Jonson 

VaRwith the Normal family (distributions withshapeparameters close to zero).  

 

Jonson VaR: 90%, 95% and 99% Quantiles 

The 90%, 95% and 99% quantile are maximum gains at 10%, 5% and 1% probabilities. The plus signmeans a 
gain (right part of the distribution). 
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Table 7.4- Jonson VaRwith 90%, 95% and 99% quantiles 

 

In the VaRcalculationaccording to Jonson'smodels, the deviations are larger for calculations at the 

differentlevels of quantiles. 

Same observation on the left and right tails of the distribution: the deviationsincrease as one moves awayfrom 

the centre. 

 

3. VaRwith3rd and 4th moments set at the 5% threshold 
Whilekeepingour respective series as such, we have assigneddifferent values to the skewness and kurtosis 

parameters, in order to see the impacts of this change on the VaRcalculation. Total and Bouygues' 

VaRcalculations are performed at the 5% threshold.  

In the tables (8.1 and 8.2) below, which show the results for the differentmodels, itisclearthat the 

furtherawayfrom the position of normality, i.e. skewness =0 and kurtosis =3, the more uncontrollable the 

risksbecome. 

 

Skewness   -1     0     1   

Kurtosis 

VaR 

GC VaR CF 

VaR 

J.log N 

VaR 

GC 

VaR 

CF 

VaR 

J.log N 

VaR 

GC VaR CF 

VaR 

 J.log N 

0 -0,4247 -0,0253 0,0261 -0,406 -0,030 0,41879 -0,389 -0,0358 1,002396 

1,5 -0,3381 -0,0248 1,63577 -0,320 -0,030 15,7381 -0,3024 -0,0352 -0,79373 

3 -0,2515 -0,0242 -25,183 -0,233 -0,029 -5,0181 -0,2158 -0,0347 -0,96156 

4,5 -0,1649 -0,0237 -9,4983 -0,147 -0,029 -4,4852 -0,1292 -0,0342 -1,32575 

5,5 -0,1072 -0,0234 -8,5323 -0,089 -0,029 -4,5682 -0,0715 -0,0339 -1,57547 

Table 8.1- Total VaR: for fixed moments 3 and 4 
 

Skewness 

Kurtosis 

  -1     0     1   

VaR 

GC 

VaR 

CF 

VaR 

J.log 

VaR 

GC 

VaR 

CF 

VaR 

J.log 

VaR 

GC 

VaR 

CF VaR J.log 

0 -0,7187 -0,022 -0,9993 -0,688 -0,026 0,00074 -0,6583 -0,031 1,000887 

1,5 -0,5722 -0,022 1,25142 -0,542 -0,026 12,6476 -0,5118 -0,031 -0,56546 

3 -0,4258 -0,021 -23,229 -0,395 -0,025 -4,3949 -0,3654 -0,03 -0,70513 

4,5 -0,2793 -0,021 -8,4548 -0,249 -0,025 -3,9087 -0,2189 -0,03 -1,01969 

5,5 -0,1816 -0,02 -7,5822 -0,151 -0,025 -3,9762 -0,1213 -0,029 -1,23575 

Table 8.2- Bouygues VaR: for fixed moments 3 and 4 
 

The coloured values are the results of the differentmodels in accordance with the normalitycriteria.  

GaussianVaRgives the lowestlossestimates, especially for the mostextreme quantiles, except in cases where the 

distributions are symmetrical (shapeparameter close to zero). 

The development of Cornish Fisher is not satisfactory. Indeed, Cornish Fisher 

VaRsystematicallygiveshigherestimates of losses and gains than the Gram Charlier VaR and the 

VaRcalculatedusingJonson'smodels. The Jonson VaRmodels are generally close to eachother. In summary the 

approachdevelopedfrom the Jonson extension istherefore close to reality. 

 

3.1 Backtesting 

The classicapproachadopted by manyauthorsis to provideVaRforecaststakingintoaccountonly the long 
position, i.e. for negativereturns. However, the forecastingcapacity of the modelsthat are proposed must 
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beassessed in both long and short positions. Actors participating in the financialmarkets are not onlycurious 

about the maximum lossthat a fall in the price of the asset theyholdcouldgenerate, but theymay, in a short 

position, beconcerned about the maximum increase in the price of an asset theyintend to acquire like 

RoseléChim and Radjou, (2020) has demonstrated. Wepresent the results of backtesting in short and long 

positions, for conditional and unconditionalhedges, in-sample and out-of-sample. In addition, we use the 

GARCH (1 1) model forecast.  

 

3.2Methodology 

Instead of contrasting the predictions of the model to the realizations, wetake the decision to continue 

with the simulation by creating as many scenarios as possible.Weimplicitly assume 

thatJonson'sapproachcalculatedaccording to the log-normal family corresponds to the real model becauseit uses 

the most information on the distribution tails. Wethenmeasure the errorsproduced by thatothermethods of 

VaRcalculation. If these computation methodsgenerate large errors, thiswillvalidate the relative contribution of 

the third and fourthordermoments. 

In thisbacktest, wewill test the validity of the VaRlevelscalculatedabove by simulating data in the law 

of eachsecurityestimatedthanks to the third and fourthorder moments and by calculating the number of times, on 

average, that the VaRs are exceeded. The standard deviation of thesenumbers of exceedancesisalsocalculated.  

Wegenerate N=1000 data for each asset and calculate the mean values of the exceedances and the corresponding 
standard deviations. 

These analyses are performed for 1%, 5%, 10%, 90%, 95% and 99% quantiles,respectively. 

 

 

3.3 Results 

The tables belowpresent, by quantile, the mean and standard deviation of the number of exceedances of the 

VaRspecifiedwitheach model. 

 

5% quantile exceedance 

Action VaR Gaussienne VaR G. Charlier VaR C. Fisher VaR Jonson 

  Average Deviation Average Deviation Average Deviation Average Deviation 

Total  0,505 0,49997 0,562 0,4961 0,505 0,4999 0 0 

Bouygues 0,505 0,49997 1 0 0,552 0,4972 0 0 

Table-9.1: Comparative table of VaR at the 5% threshold 

 

GaussianVaRunderestimates or overestimateslosses as the case maybe. Losses are generallyoverestimated in the 

case of Bouygues shares, whose distribution ishighlyskewed. 

Cornish Fisher generallyoverestimateslosses (oftenexceeding 0.5). 
NB: By constructingthe simulation itself, the number of overshootings for the Jonson VaRiszero. This isonly a 

numericalconsequence of the simulation, sowe notice thatthis model has not recordedanyovershoot. 

Exceedence for 95% quantile 

Action VaR Normale VaR G. Charlier VaR C. Fisher VaR Jonson 

  Average Deviation Average Deviation Average Deviation Average Deviation 

Total  0,528 0,526 0,562 0,49614 0,527 0,49927 0 0 

Bouygues 0,49921 0,499 1 0 0,5 0,5 0 0 

Table-9.1: Comparative table of VaR at the 5% threshold 

 

GaussianVaRmostoftenoverestimates the gains (oftenlessthan 0.5). The results are more in line with the true 

model for the mostsymmetrical distribution (Total case in particular). 

The Cornish Fisher VaRgivesunsatisfactoryresults, withovershootssometimessignificantlyabove or below the 

expectedlevel, whichalternatelyunderestimates or overestimatesearnings, except in the case of Total, which has a 

more or lesssymmetrical distribution.  

The tables of overruns for the remaining quantiles are in the Appendices.  

The GaussianVaR model errorissignificant, leadingmostoften to underestimatinglosses and overestimating 

gains. However, theseresults are more nuancedwhen the distributions are symmetrical. Backtestingalso leads to 

rejectingVaRestimates made from the Cornish Fisher developmentbecausethis model tends to 

overestimatelosses. 
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ClosingRemarks 

This researchwork has focused on many of the elementsinvolved in designing and assessing a measure 

of risk in finance. The crisis has reminded us of a simple lessonthat the habit of prosperity has succeeded in 

hiding:thereis no suchthing as fast and risk-free wealth. Growth in the value of goodsislimited by time and risk.  

Beyond calculation, risk must betested and thentranslatedintoacts of prudent management, simplicity 

must befavoured ("Whatis simple iswrong. Whatiscomplicatedisunusable" P. Valery). It isthenclearwhy Value-

at-Risk (VaR) isstilluseddespiteitsshortcomings. Value-at-Risk (VaR) iscommonlyused by regulators and 
practitioners to manageexposures to marketrisks. 

In the various sections, we have examined the performance of differentmethodologiesused to 

measureVaR. As a result, wefoundthatamongourdifferentmethodologies, the normal distribution approachis the 

least accurate and thisis not surprising. Appliedresearch has developed formulas to compensate for the inability 

of GaussianVaR to adapt to the asymmetry in the distributions of returns on financial assets. In particular, Gram 

Charlier'smethod, the development of Cornish Fisher and the extension of Jonson are corrections to the 

GaussianVaR formula consisting of introducing kurtosis and skewnessintoits expression.  

Judgingitnecessary to identify a model thatcorrectlyfits the shape of the tails of distributions, we have 

exploited the properties of toolsdeveloped by modern statistics, the third and fourthordermoments. 

Theirpropertiesmakeit possible to better capture information on extreme values. Model estimation allows us to 

build a more robustindicator of VaR. This is a parametric Jonson VaRbased on the log-normal family of four 
parameters. 

The use of Johnson'smethodologywiththird and fourth-order moments provides a bettermeasure of 

riskthan the normal distribution in general. Theseresults are consistent with the literature and demonstrate the 

relevance of usingthemratherthan the normal distribution. 

Furthermore, severalbacktests show that Jonson VaRis a more accurate model thanGaussianVaR and 

givesresultsthat are both more convincing and more stable thanCornish Fisher VaR and Gram Charlier VaR. 

The Jonson VaRistherefore a greatstepforward. The VaRcalculationisthenverytheoretical and the 

actuallosses are higherthanexpected. Takingintoaccount the disappearance of the market in 

VaRmodelswouldthereforebe a significantimprovement. 
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Appendixes 

Historicallogarithmicreturns: Total and Bouygues Equities 

 
 

 
 

Yieldnormality test   

The normal distribution occursmostoften in statistics and mostestimates are made assumingthat the distribution 

of the empirical data is normal. 

However, itis rare for an empirical data distribution to beperfectly normal. It isthereforenecessary to make 

approximations and establishcriteria to "approximate" any distribution to the normal distribution. 

A normal distribution ischaracterizedmainly by twoparameters: the mean and the variance (second order 

moment). Twoother important parametersused to characterize a normal distribution are the Skewness and 
Kurtosis coefficients. 

Skewness or skewness coefficient 

The Skewness coefficient S_kmeasures the asymmetry of the distribution;itisassociatedwith the moment of 

order 3. It isgiven by :   
 

 
  

     

  
 
 

 

The empiricalskewness S iscompared to that of a reduced and centred normal distribution which is 0 : 

- If   = 0 ,then the distribution issymmetrical and has a good chance of being close to a normal distribution (but 
not a sufficient condition). 

- If    0, then the distribution spreads to the right and issaid to bepositivelyskewed. 

- If Si   < 0, then the distribution spreads to the left and issaid to benegativelyskewed. 

 

The graphs belowillustratethisbehavior. 
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FIGURE .1 :  <0                                       FIGURE.2 :  >0     

 

Kurtosis or flattening coefficient 

The Kurtosis coefficient K measures the flattening of a distribution. 

It is a measure of the degree of concentration of observations at the "tail" of the distribution. It isassociatedwith 

the moment of order 4. In our case, itisgiven by :     
 

 
  

     

  
 
 

 

Kurtosis iscompared to a reducedcentered normal distribution of 3 : 

- If K = 3, then the distribution issaid to bemesocurtic, its "tail" is close to that of a normal distribution. 

- If K > 3, then the distribution issaid to beleptocurtic, it has a thicker "tail". 

- If K < 3, then the distribution issaid to beplatocurtic, with a thinner "tail". 

Autocorrelations of series 'Rtotal', by lag      

Autocorrelations of series ‘Rtotal’, by lag      

1.000    -0.005     0.022     -0.015      0.012     -0.021      0.067      0.037     -0.020     -0.005     -0.023     

0.011      -0.002       0.024      0.007      0.017      0.019     0.005      0.006      0.050     -0.042      0.026  

 0.035      0.024      0.027      0.018     -0.009      0.000     -0.014     -0.017      0.003     -0.048 

 
This resultshouldberead by looking at the values 2 by 2 vertically: the upper value represents the offset and the 

lower value the coefficient. 

The graphs below have been createdwith the R software;theyrepresent the superimposedhistograms of a 

distribution of the normal distribution of returns of ourvarioussecurities.  

On thesehistograms, we have superimposed the density graph of a normal distribution with the 

samecharacteristics (Variance, Mean) as the returns, to better observe the behaviour of the returns. 

Model [3] with constant and trend  

 

 
The t of the trend coefficient iscomparedwith the value given by the Dickey-Fuller table. Weseethat t = 1.94 < 

2.78, the hypothesis H0 isaccepted: the trend is not significantlydifferentfromzero. Wethen move on to model 

[2] without constant and without trend. 
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Model [2] with constant and without trend  

 
 

We can seethat the coefficient of the constant est is not significantlydifferentfromzerobecausewe have t = 0.88 < 

2.52. Wethen move on to model [1] without constant and without trend. 

 

Model [1] without constant and without trend  

 
We have 2.60 > -1.94 (for a risk of 5%), the hypothesis H0 isverified: 
 

Non-stationaryseries. 

The GARCH tests  
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Table 3- GARCH Test 

 
 

Table 3-BOUYGUESGARCH Test 

 
 

Staticbacktest 

Overruns for 1% quantile 

Equity VaR Normale VaRG.Charlier VaRC.Fisher VaR Jonson 

  Mean Deviation Mean Deviation Mean Deviation Mean Deviation 

Total  0,5 0,5 0,428 0,494789 0,486 0,499804 0 0 

Bouygues 0,5 0,5 0,999 0,031607 0,275 0,446514 0 0 

 

Overruns for 10% quantile 

Equity VaR Normale VaRG.Charlier VaRC.Fisher VaR Jonson 

  Mean Deviation Mean Deviation Mean Deviation Mean Deviation 

Total  0,505 0,49997 0,525 0,49937 0,506 0,499964 0 0 

Bouygues 0,505 0,49997 1 0 0,602 0,489485 0 0 

 

 

 

Overruns for 90% quantile 
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Equity VaR Normale VaRG.Charlier VaRC.Fisher VaR Jonson 

  Mean Deviation Mean Deviation Mean Deviation Mean Deviation 

Total  0,525 0,49934 0,525 0,499375 0,519 0,499639 0 0 

Bouygues 0,525 0,49934 1 0 0,427 0,494642 0 0 

 

Overruns for 99% quantile 

Action VaR Normale VaRG.Charlier VaRC.Fisher VaR Jonson 

  Mean Deviation Mean Deviation Mean Deviation Mean Deviation 

Total  0,536 0,498702 0,428 0,494789 0,541 0,498316 0 0 

Bouygues 0,531 0,499038 0,068 0,251746 0,79 0,407308 0 0 

 

Backtest : Prévision TOTAL 

 
 

Backtest : prévision  TOTAL 
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Backtest : prévision Bouygues 

 
 

Backtest : prévision Total 
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