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Abstract:
The purpose of this article is to propose a new approach for finding the guaranteed solution set of minimized
assignment problems and maximized assignment problems. Firstly the existence of the minimin and maximax
optimization problems are studied with the help of newly defined weakly φ-convex function in φ-convex set. Next
the assignment problems and traveling problems are converted to a complete bipartite graph in a unified
approach. The concept dominated assignment simulation (DAS) technique based on the theory of minimin and
maximax optimization problems.
Later a pair of traveling salesman problems are studied using the DAS technique and complete bipartite graph
as an application of minimin optimization problem. Finally, a pair of comparison studies are discussed to show
equality of solutions and the number of steps in between Hungarian method and DAS technique.
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1. Introduction
The theory of assignment problems (AP) is one of the best tool to find the solution of various
problems like assigning jobs to workers, workers to machines, Salesman to different sales area
problems, Chinese Post man Problems, Network Flow Problems, Classes to rooms problems, Drivers
to trucks, Vehicle to delivery routes, Contract to bidders, Pairing of crew with flight schedules,
Problems to research terms and many more. Carl Gustav Jacobi introduced the concept of AP in 1890
and developed the algorithm of it. In 1931, the two Hungarian Mathematicians D. König and E.
Egervàry have developed the algorithm to solve the AP Assignment Problem. AP was firstly seen in
the article of Votaw and Oden in 1952. Later Kuhn ([16], 1955) gave the recognition and significance
of the algorithm developed by two Hungarian Mathematicians D. König and E. Egervàry and coined
the term of the algorithm “Hungarian method”. Now a days “Hungarian Method” is one of the most
useful method to solve linear assignment problem. The development of the AP is done due to
various researchers such as Burkard and Ce la [4], Bukard [5], Flood [11], Ford and Fulkerson [12],
Kuhn [16], Kuhn [17], Levit and Mandrescu [18], Deming [9], Janson [14], Amponsah et al. [1], Dimitri
[10], Rao and Srinivas [23] and the references therein. Although the basic version of the AP can be
solved very efficiently (say by the Hungarian method in O(�3) steps [21]), there are certain variants of
this problem which are much harder, some being NP-complete or with undecided computational
complexity. One of them is the parity AP: Obviously, � entries of an � × � matrix, no two belonging
to the same row or column, correspond to a permutation of the set � = {1,2, ⋯, �}. In the classical
AP, no additional conditions are set on the optimal permutation. In the parity AP, this permutation
has to be of a prescribed parity. In 2003, Butkovic [6] has shown that a diagonally dominant matrix
can be transformed to a normal form by adding constants to the rows and/or columns and no
permutations of the rows or columns are needed. These constants can be found in a straightforward
way, without using the Hungarian method or other method for solving the AP. In 2018, Porchelvi and
Anitha [22] have studied the assignment problem using average total opportunity cost method.
According to Dantzig et al. [8], Hassler Whitney introduced the travelling salesman problem (TSP) in
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in his talk at Princeton University. It is to be noted that if the additional requirement is that the
permutation is cyclic, then the arising task is the well-known (NP-complete) travelling salesman
problem.

1.1 ASSIGNMENT PROBLEM
The assignment problem in which � workers are assigned to � jobs can be represented as an LP
model: Define ��� is the cost of assigning worker � to job � (�, � = 1,2, ⋯, �) which are given in the
Table 1.1:

Table 1.1: Assignment Problem.

and define

��� = 1 if the �th job is assigned to �th person ;
0 otherwise .

Then, the LPmodel for assignment problem is defined by

Minimize

� =
�=1

�

�
�=1

�

� ������

Subject to

�=1

�

� ��� = 1,
�=1

�

� ��� = 1,

where ��� = 0 or 1 ��� �, � = 1,2, ⋯, �.

In second section, the results on minimin and maximax optimization problems are studied in � -
convex set with the help of newly defined weakly �-convex function on it. Das technique is based on
the theory of minimin optimization problems. In third section, the linear minimized assignment
problem (or linear maximized assignment problem) is reduced to a bipartiate graph and studied with
the help of DAS-technique associated with a decision matrix and the corresponding dominated
column (or dominating column) for the undecided computational complexity. Some numerical
examples are also given. The process to reduce the order of the minimized assignment problem is
discussed as an application of the theory of minimin optimization problems. Algorithm and complete
bipartiate graph for solving the traveling salesman problem in DAS-technique is discussed with some
numerical examples. Finally in sixth section, a pair of comparison study are done to show equality of
solutions and number of steps results in between Hungarian method and DAS technique.

Job→

Worker↓

�1 �2 … ��

�1 �11 �12 … �1�

�2 �21 �22 … �2�

⋮ ⋮ ⋮ ⋱ ⋮

�� ��1 ��2 … ���
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2 MiniMin and MaxiMax Problems
In this section the existence of the solution of minimin and maximax optimization problems

are studied in � -convex set with the help of newly defined weakly � -convex function on it. The
results are useful to study the minimized and maximized assignment problems.

Minimized Assignment Problem
Let � and � be two vector spaces. Let � ⊂ � and � ⊂ � be two � -dimensional convex

subsets. Consider a network game with � agents interacting over a network � ∈ � × � such that for
�� ∈ � and �� ∈ �, �(��, ��) is identified by

� � =
��� ≥ 0, influence of � on �;

��� = 0, no self loops.

Each agent � has strategy �� ∈ � in the feasible set �� ⊂ � for the agent �. The cost of each agent � to
get the response from agent � is

��� = �(��, ��(�)): � × � → ℝ

where ��(�) is the aggregator of each agent � on agent � is defined by the rule

��(�) = �=1
� � �����.

The aim of the problem is to find the best response (��),

��(��(��)) = argmin
��∈��

�(��, ��(�)).

2.1 The Minimin and Maximax Problems
Let � and � be two subsets. Let �: � × � → ℝ be a real valued function. The min-min

problem and max-max problems are defined as follows:

(�1) The minimin problem is to find the optimal solution

min
�∈�

min
�∈�

�(�, �) = min
�∈�

min
�∈�

�(�, �).

(�2) The maximax problem is to find the optimal solution

max
�∈�

max
�∈�

�(�, �) = max
�∈�

max
�∈�

�(�, �).

Consider the set of solutions of the problems �1 and �2 as follows:

�(�1) = (�∗, �∗) ∈ � × �: (�∗, �∗) solves �1

�(�2) = (�∗, �∗) ∈ � × �: (�∗, �∗) solves �2 .

If the function � is differentiable on � × � , then the Kuhn-Turker (KT) condition for both the
problems �1 and �2 is to find the solution �∗ = (�∗, �∗) ∈ � × � such that

∇�(�∗) = ∇��(�∗,�∗)
∇��(�∗,�∗)

= 0.

2.2 Weakly �-Convex Functions and The results
The definition of weakly �-convex function in �-convex set is defined as follows.
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Definition 2.1 Let � be a nonempty subset of a vector space �.

(i) A set � ⊂ � is said to be �-convex on � if there exist a function �: ℝ = (0, ∞) →
[0,1] such that �(�) → 0 as � → 0 and �(�)� + (1 − �(�))� ∈ � for all �, � ∈ �.
If particular if �(�) = �, then � is affine set.

(ii) The mapping �: � ⊂ � → � is weakly �-convex on � if for all �, � ∈ �,

� �(�)� + (1 − �(�))� ≤
�(�)

1 + �(�)
�(�) +

1
1 + �(�)

�(�)

Theorem 2.2 Let � be a nonempty �-convex subset of a vector space � and �: � → � be weakly �-
convex on �, then for any � ∈ �,

� � − � � ≥ 0 for all � ∈ � ⇔ ∇� � , � − � ≥ 0 for all � ∈ �.

Proof. It can be easily prove that

�(�) − �(�) ≥ 0 for all � ∈ � ⇔ 〈∇�(�), � − �〉 ≥ 0 for all � ∈ �.

Conversely, let for any � ∈ � , 〈∇�(�), � − �〉 ≥ 0 for all � ∈ �. From the definition of weakly � -
convexity of � on �, we obtain

(1 + �(�))� �(�)� + (1 − �(�))� ≤ �(�)�(�) + �(�)

for all �, � ∈ �. For any � ∈ �,

(1 + �(�)) � �(�)� + (1 − �(�))� − �(�) ≤ �(�)�(�) + �(�) − (1 + �(�))�(�)

= �(�)[�(�) − �(�)]

for all � ∈ �, i.e.,

(1 + �(�))
�(� + �(�)(� − �)) − �(�)

�(�) ≤ �(�) − �(�)

for all � ∈ �. Take limit as �(�) → 0 to obtain

�(�) − �(�) ≥ 〈∇�(�), � − �〉 ≥ 0

for all � ∈ �. This completes the proof.

Let �( ⋅ ) = �( ⋅ , �): � → ℝ and ℎ( ⋅ ) = �(�, ⋅ ): � → ℝ. The Minimin problem �1 can be splitted in
two problems:

(�1
∗) find �∗ ∈ � such that for all � ∈ �,

�(�, �) − �(�, �∗) ≥ 0 ∀ � ∈ � ⇔ ∇��(�, �∗), � − �∗ ≥ 0 ∀ � ∈ �;

(�1
∗∗) find �∗ ∈ � is the minimum point of ℎ(�) = �(�, �), then find the point �∗ ∈ �

such that for any �∗ ∈ �,

�(�, �∗) − �(�∗, �∗) ≥ 0 ∀ � ∈ � ⇔ ∇��(�∗, �∗), � − �∗ ≥ 0 ∀ � ∈ �.

The Maximax problem �2 can be split in to two problems:

(�2
∗) find �∗ ∈ � such that for all � ∈ �,
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�(�, �) − �(�, �∗) ≤ 0 ∀ � ∈ � ⇔ ∇��(�, �∗), � − �∗ ≤ 0 ∀ � ∈ �;

(�2
∗∗) find �∗ ∈ � is the maximum point of ℎ(�) = �(�, �), then find the point �∗ ∈ �

such that for any �∗ ∈ �,

�(�, �∗) − �(�∗, �∗) ≤ 0 ∀ � ∈ � ⇔ ∇��(�∗, �∗), � − �∗ ≤ 0 ∀ � ∈ �.

Theorem 2.3 If ℎ(�) = �(�, �) is weakly �1-convex on � and �(�) = �(�, �) is weakly �2-convex on
�, then the problem finding �∗ = (�∗, �∗) ∈ � × � such that for all � = (�, �) ∈ � × �,

�(�) − �(�∗) ≥ 0 ⇔ 〈∇�(�∗), � − �∗〉 ≥ 0

where

∇�(�∗) = ∇��(�∗,�∗)
∇��(�∗,�∗)

.

Proof. Proof of this theorem can be proved like Theorem 2.2. So the proof is skipped.

Theorem 2.4 If ( − ℎ)(�) = ( − �)(�, �) is weakly �1-convex on � and ( − �)(�) = ( − �)(�, �) is
�2-convex on �, then the problem finding �∗ = (�∗, �∗) ∈ � such that for all � = (�, �) ∈ �,

�(�) − �(�∗) ≤ 0 ⇔ 〈∇�(�∗), � − �∗〉 ≤ 0

where

∇�(�∗) = ∇��(�∗,�∗)
∇��(�∗,�∗)

.

Proof. Proof of this theorem can be proved like Theorem 2.3. So the proof is skipped.

3 Network representation of AP
Harold Kuhn [15] developed and published the Hungarian method in 1955; is a combinatorial
optimization algorithm that solves the assignment problem in polynomial time. James Munkres [20]
studied the algorithm and observed that it is strongly polynomial. In this article our main focus is to
develop a favorable matching of edges that will minimizing the total cost of the assignment problem,
we recall some definitions and results for our need. Let G be a graph having E(G) as a set of edges
and V(G) is a set of vertices.

Definition 3.1 [14] Let � be a graph and � ⊆ �(�). Then � is a matching in � if no two edges of �
have a common end-vertex. We say that � is a maximum matching if it has maximum cardinality
over all matchings in �. A vertex � ∈ �(�) is �-saturated if � is incident with an edge of �. We say
that � is a perfect matching in � if every vertex of � is �-saturated. Thus, if � is a perfect matching,
then � = 1

2
�(�) and � is necessarily a maximum matching. Let match (�) denote the size of a

maximum matching in �.

Definition 3.2 [14] The complete bipartite graph ��;� is the bipartite graph with bipartition {�; �}
where � = �, � = � and each vertex of � is adjacent to every vertex of �.

Let N be a network obtained from K�;� by giving each edge � an integer weight �(�). A perfect
matching of maximum weight in N can be represented as �(�).
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Theorem 3.3 [14] Suppose N is a network obtained from K�;� by giving each edge � an integer
weight. Then the Hungarian method finds a maximum weight perfect matching in N in time �(�4),
under the assumption that all elementary arithmetic operations take constant time.

3.1 Simulation Technique
Let � be a network obtained from a complete bipartite graph K�;� with bipartition {�; �} such that
� = �, � = �, V(N) = � ∪ � and M be a perfect matching for N. Here the Table 3.2 represents
the cost matrix the assignment problem.

Y→

X↓

�1 �2 … ��

�1 �11 �12 … �1�

�2 �21 �22 … �2�

⋮ ⋮ ⋮ ⋱ ⋮

�� ��1 ��2 … ���

Table 3.2: Cost Matrix.

and define

��� = 1 �� �� is assigned to �� ;
0 otherwise .

The graphical form of the network N is given in Figure 3.1. In the network N , each vertex � ∈ � is
adjacent to all vertex � ∈ � and represented by ��. Let weight function

�: � × � → � = ���: ��,� = the weight of the edge �� .

The minimum weight function is

�∗: � × � → � = �∗ �, � : ��,� = the minimum weight of the edge �� ,

i.e.,

�∗(��, ��) = min
1≤�≤�

���� = min
1≤�≤�

���.

The maximum weight function is

�∗: � × � → � = �∗ �, � : �∗ �, � = the maximum weight of the edge �� ,

i.e.,

�∗(��, ��) = max
1≤�≤�

���� = max
1≤�≤�

���.

Let the favorable optimal weight (fow) = min or max. The length function

�: � × � → � = ���: ��� = � ���, �(�+1)� = �(�+1)� − ���

the difference between the weights.
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In Figure 3.1; for � = 1,2⋯, � and � = 1,2⋯, �, ���� denotes the edge joining the two nodes �� ∈ �
and �� ∈ � where as ��� denotes the weight of the edge ����. For any vertex ��, � = 1,2⋯, �, fow is

�� = �(��) = fow
�=1

�
��� = ���. (���)

Here �(�1, �2) , �∗(�1, �2) and �∗(�1, �2) we denote the difference, infimum of difference and
supremum of difference between the weights of the vertices respectively.

4 DAS-Technique
In 2014, Das and Das [7] have developed the dominated assignment simulation (DAS) technique to
solve assignment problems and have solved the minimized assignment problems and maximized
assignment problems using minimin and maximax approach respectively. The main procedure of
DAS-technique is based on three important steps which are given below.

(a) Depending on the classification of the objective function (i.e. minimization or
maximization) of the AP, construct � different assignment problems, called simulated
assignment problems (SAP)

(b) Find simulated sum of each SAP.
(c) Optimal solution

(i) For minimized assignment problem, the optimal solution is the minimum of all
simulated sums.

(ii) For maximized assignment problem, the optimal solution is the maximum of all
simulated sums.

(d) Allocate the assignments.
According to Das and Das [7], the AP given with a balanced cost matrix of order � is remodeled by �
cyclic assignment problems (called simulated assignment problems) (SAP)s by cyclic permutation of
the rows as

�1 = ���1 = 123⋯� and �� = �(� + 1)⋯�12⋯(� − 1) = ����, � = 2, ⋯, �.

The �th simulated assignment problem is

�1 = ���1 = �� and�� = ���� = [��, ��+1, ⋯, ��, �1, �2, ⋯, ��−1]�, � = 2,3, ⋯, �, where �th row
of the AP is the first row of the ���� and the other (� − 1) rows are placed in a cyclic form. If �� is
the sum of assignment values of the ����, then optimal solution of the AP is � = min

�
��.
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This technique gives unique solution for the minimized assignment problem (maximized assignment
problem) with more than one perfect matching of the assignments. They have also reduced the
order of the assignment problems to solve it using DAS-technique.

Decision Matrix
In DAS technique [7], a square decision matrix of order 2 plays an important role for finding last two
assignments in the SAP.

Definition 4.1 [7] Let � = (���) ∈ ��×� be the set of square matrix of order �. The element ��� is the
off-diagonal element of � if for all �, � , we have � + � = � + 1 and sum of off-diagonals of � is
denoted by offtr(�).

4.1 Rule of finding the assignments from the Decision Matrix:

The decision matrix of SAP is of order 2 given by � =
�11 �12
�21 �22 where diagonal elements are

�11, �22 and off-diagonal elements are �21, �12 . Then trace and off-trace of � are

tr(�) = �11 + �22 and offtr(�) = �12 + �21

respectively. Here we can obtain the last two assignments from the decision matrix for the cost
matrix of minimized (or maximized) assignment problem.

4.2 Steps to find decision cost matrix
Let the first simulated assignment problem (���1) , that is, the original �� be given. We

choose the minimum (maximum) element of the row to select as an assignment of that row if the ��
is minimized (maximized). To find the decision matrix from the simulated assignment problem, we
follow the steps accordingly:

(a) Select the first assignment from the first row and cover its corresponding row and
column.

(b) Select the second assignment from the second row and cover its corresponding
row and column, continue this process upto (� − 2)th row.

(c) If (� − 2) numbers of assignments are selected, then we have the decision
matrix whose entities are the uncovered elements of the last two rows (that is,
(� − 1)th row and ��ℎ row) from which we find the last two assignments of ���1.
Use this process to find the decision matrix of the problems ���2, ���2, ⋯, ����.

4.3 Algorithm of Simulation technique for Minimized Assignment Problem
The algorithm of the DAS-technique for the minimized assignment problem are given as follows:

(a) Select first assignment from first row, i.e.,
�1� = �∗(�1, ��) = min

1≤�≤�
�1�,

then cover the assignment �1�.

(b) Select second assignment from second row, i.e.,
�2� = �∗(�2, ��) = min

1≤�≠�≤�
�2�,

then cover the assignment �2�.

(c) For tie case in �th row, dominated column is obtained according to (� + 1)th row,
again for tie case in (� + 1)th row, dominated column is obtained according to (� +
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2)th row. For tie case in a row, the algorithm to find the dominated column and to
select the assignment is given as follows:

(i) If the tie case arises in �th row, and �th, �th columns then the assignment
selection is

�∗(��, ��) =

���, if ��� = �∗(���, �(�+1)�) = �(�+1)� − ��� = max;
otherwise
���, if ��� = �∗(���, �(�+1)�) = �(�+1)� − ��� = max,

= ��� if ��� = max, � ∈ �, � .

Cover the assignment ���.

(ii) Cover the rows and columns of the selected assignments from top to
bottom.

(d) Using step (a) to step (c), select (� − 2) assignments from the first (� − 2) rows (top
to bottom) of the simulated assignment problem.

(e) Last two assignments are obtained from the decision matrix whose elements are
uncovered elements of last two rows.

(f) First simulated sum
�1 = �1� + �2� + ⋯

is the sum of all selected assignments of the ���1.

(g) Use the process from (a) to (f) to find all the simulated sums �1, �2, �3, ⋯, �� of the
simulated assignment problems ���1, ���2, ���3, ⋯, ���� respectively.

(h) The optimal solution of �� is � equals to minimum of all the simulated sums
�1, �2, �3, ⋯, ��, that is,

� = min
1≤�≤�

�� = �� (say).

(i) Allocate the feasible assignments corresponds to ��.
(j) For tie case of simulated sums, i.e.,

� = min
1≤�≤�

�� = ��1 , ��2, ⋯, ���

where �1 < �2 < ⋯ < ��. Choose the simulated sum � according to priority.

In the following example, the cost matrix is given for � = 5 and the optimal solution estimated for
minimized assignment problems using DAS-technique.

Algorithm of DAS-technique for Maximized Assignment Problem
The algorithm of maximized assignment problem is based on dual operation given in the

algorithm for minimized assignment problem.

(a) The relation ≤ will be replaced by ≥, min is replaced by max,
(b) �∗ will be replaced by �∗,
(c) �∗ will be replaced by �∗ and
(d) dominated column will be replaced by dominating in the algorithm.



Reducing The Order Of The Travelling Salesman Problems By Minimin Optimization Theory……..

DOI: 10.9790/5933-1505066388 www.iosrjournals.org 72 | Page

Example 4.2 Let network game with 5 agents interacting over a network with cost matrix of the
minimized assignment problem be given in the Table 4.3.

�1 �2 �3 �4 �5

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

Table 4.3: Cost Matrix.

In this minimized assignment problem, the agents �1 , �2 , ⋯, �5 are interacting to the networks �1 ,
�2, ⋯, �5.

(i) For 1 ≤ � ≤ �, �∗(�1, ��) = min
�

�1� = 8 = �12. Covering first row and 2nd column,

the table is obtained as
�1 �2 �3 �4 �5

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

Table 4.4: (SAP-1) 1st assignment selection.

(ii) For 1 ≤ � ≤ �, � ≠ 2,
�∗(�2, ��) = min

�
�1� = 9 = �21, �24 .

For 2nd row, tie case arises in 1st, 4th columns. As

�21 = �∗(�21, �31) = 3

�24 = �∗(�24, �34) =− 5,

and max �21, �24 = max 3, − 5 = 3 = �21 or max �31, �34 = max 12,4 = 12 = �31 , we
have first column (�1) is dominated column.

Thus the assignment for the second row is �∗(�2, ��) = �21 = 9 . Covering the second row and first
column, the table obtained as
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�1 �2 �3 �4 �5

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

Table 4.5: (SAP-1) 2nd assignment selection.

(iii) For 1 ≤ � ≤ �, � ≠ 1,2, �∗(�3, ��) = min
�

�3� = 4 = �33, �34, �35 . For 3rd row, tie

case arises in 3rd, 4th and 5th columns. Since
�33 = �∗(�33, �43) = 6

�34 = �∗(�34, �44) = 4

�35 = �∗(�35, �45) = 9

and since in the third row, max �33, �34, �35 = max 6,4,9 = 9 = �35 or
max �43, �44, �45 = �45 , the dominated column is the fifth column (�5 ), implying the
assignment for the third row is �35 = 4, i.e., we have

�∗(�3, ��) = �35 = 4.

Covering the third row and fifth column, the table obtained as

�1 �2 �3 �4 �5

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

Table 4.6: SAP-1 3rd assignment selection.

(iv)Since the cost matrix of the AP is of order 5 and we have selected 3 numbers of
assignments from the first three rows of the matrix, so the last two assignments will
be obtained from the decision matrix �1 whose elements are the uncovered
elements fourth row and fifth row. The decision cost matrix �1 for ���1 is

�1 =
�43 �44
�53 �54

= 10 8
18 12

which gives the assignments �43 = 10 and �54 = 12, since tr(�1) < offtr(�1). Hence the
first simulated sum is

�1 = �12 + �21 + �35 + (�43 + �54) = 8 + 9 + 4 + (10 + 12) = 43

where the bracket is given because of decision matrix assignments.
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In ���2, for first three rows the assignments selected in Table 4.7 are �21 = 9, �35 = 4 and �42 =
8. Last two assignments obtained from the decision matrix

�2 =
�52 �53
�12 �13

= 17 18
8 16

are �53 = 18 and �12 = 8 since offtr(�2) < ��(�2).

�1 �2 �3 �4 �5

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

�1 13 8 16 18 19

Table 4.7: SAP-2.

Hence the second simulated sum is

�2 = �21 + �35 + �44 + (�53 + �12) = 9 + 4 + 8 + (18 + 8) = 47.

In ���3, for first three rows the assignments selected in Table 4.8 are �35 = 4, �41 = 6 and �54 =
12. Last two assignments obtained from the decision matrix

�3 =
�12 �13
�22 �23

= 8 16
15 24

are �13 = 16 and �22 = 15 , since offtr(�3) < ��(�3). Hence the third simulated sum is �3 =
�35 + �41 + �54 + (�13 + �22) = 4 + 6 + 12 + (16 + 15) = 53.

�1 �2 �3 �4 �5

�3 12 9 4 4 4

�4 6 12 10 8 13

�5 15 17 18 12 20

�1 13 8 16 18 19

�2 9 15 24 9 12

Table 4.8: SAP-3.

In ���4 , for first three rows the assignments selected in Table 4.9 are �41 = 6 , �54 = 12
and �12 = 8. Last two assignments obtained from the decision matrix

�4 =
�23 �25
�33 �35

= 24 12
4 4

are �25 = 12 and �33 = 4 since offtr(�4) < ��(�4). Hence the fourth simulated sum is
�4 = �41 + �54 + �12 + (�25 + �33) = 6 + 12 + 8 + (12 + 4) = 42.
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�1 �2 �3 �4 �5

�4 6 12 10 8 13

�5 15 17 18 12 20

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

Table 4.9: SAP-4.

In ���5 , for first three rows the assignments selected in Table 4.10 are �54 = 12, �12 = 8,
and �21 = 9. Last two assignments obtained from the decision matrix

�5 =
�33 �35
�43 �45

= 4 4
10 13

are �35 = 4 and �43 = 4 since offtr(�5) < ��(�5). Hence the fifth simulated sum is �5 =
�54 + �12 + �21 + (�35 + �43) = 12 + 8 + 9 + (4 + 10) = 43.

�1 �2 �3 �4 �5

�5 15 17 18 12 20

�1 13 8 16 18 19

�2 9 15 24 9 12

�3 12 9 4 4 4

�4 6 12 10 8 13

Table 4.10: SAP-5.

Thus, the optimal simulated sum is

� = min {�1, �2, �3, �4, �5} = min {43,47,53,42,43} = 42 = �4.

Hence, ���4 gives allocation of the assignments as follows:

�4 → �1; �5 → �4; �1 → �2; �2 → �5 and �3 → �3.
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Solution of Unbalanced Assignment Problems

The unbalanced assignment model with � workers and � jobs where � ≠ � is also known as
rectangular assignment problem. The following example showing the existence of the optimal
solution in rectangular assignment problem solved using DAS-technique.

Example 4.3 The owner of a small machine shop has four mechanics available to each assign each
jobs for the day. Five jobs are offered with expected profit for each mechanic on each job which are
given in the following Table 4.11.

Jobs →

Mechanics ↓

�1 �2 �3 �4 �5

�1 62 78 50 101 82

�2 71 84 61 73 59

�3 87 92 111 71 81

�4 48 64 87 77 80

Table 4.11: Profit Matrix.

To find the assignment of the mechanics to the job such that the result is in maximum profit and to
know the job declination, we introduce a dummy mechanic 5 with all elements 0 as given in the table
4.12.

�1 �2 �3 �4 �5

�1 62 78 50 101 82

�2 71 84 61 73 59

�3 87 92 111 71 81

�4 48 64 87 77 80

�5 0 0 0 0 0

Table 4.12: Profit Matrix with dummy profits.

Since the problem is maximized assignment problem, the Maximax criterion will be used.

(i) The first simulated assignment problem (���1) given in Table 4.13.
For 1 ≤ � ≤ �, �∗(�1, ��) = max

�
�1� = 101 = �14.

For 1 ≤ � ≤ �, � ≠ 4, �∗(�2, ��) = max
�

�2� = 84 = �22.

For 1 ≤ � ≤ �, � ≠ 2,4, �∗(�3, ��) = max
�

�� = 111 = �33.

Last two assignments �45 = 80 and �55 = 0 obtained from first decision matrix

�1 =
�41 �45
�51 �55

= 48 80
0 0 since offtr(�1) > ��(�1). From (���1), we have
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�1 �2 �3 �4 �5

�1 62 78 50 101 82

�2 71 84 61 73 59

�3 87 92 111 71 81

�4 48 64 87 77 80

�5 0 0 0 0 0

Table 4.13: SAP-1.

the first simulated sum �1 as �1 = �14 + �22 + �33 + (�45 + �51) = 101 + 84 + 111 +
(80 + 0) = 376.

(ii) The second simulated assignment problem (���2) given in Table 4.14
�1 �2 �3 �4 �5

�2 71 84 61 73 59

�3 87 92 111 71 81

�4 48 64 87 77 80

�5 0 0 0 0 0

�1 62 78 50 101 82

Table 4.14: SAP-2.

which has the second simulated sum �2 as

�2 = �22 + �33 + �45 + (�51 + �14) = 84 + 111 + 80 + (0 + 101) = 376

where the elements given in the brackets are the assignments �51 = 0 and �14 = 101 obtained

from second decision matrix �2 =
�51 �54
�11 �14

= 0 0
62 101 since tr(�2) > offtr(�2).

(iii) In the third simulated assignment problem (���3) given in Table 4.15,
�1 �2 �3 �4 �5

�3 87 92 111 71 81

�4 48 64 87 77 80

�5 0 0 0 0 0

�1 62 78 50 101 82

�2 71 84 61 73 59

Table 4.15: SAP-3.

the assignments for first row and second row are �33 = 111 and �45 = 80 respectively.
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In the third row all the elements are 0, so to find the dominating column. Here �1 is the
dominating column since the fourth row contains the unique minimum element �41 =
62. So the assignment for third row is �51 = 0. The third decision matrix is

�3 =
�12 �14
�22 �24

= 78 101
84 73 . Thus the last two assignments obtained from the

decision matrix �3 are �14 = 101 and �22 = 84 since offtr(�3) > ��(�3) . Hence the
third simulated sum �3 is

�3 = �33 + �45 + �51 + (�14 + �22) = 111 + 80 + 0 + (101 + 84) = 376.

(iv)The fourth simulated assignment problem (���4) is given in Table 4.16.
�1 �2 �3 �4 �5

�4 48 64 87 77 80

�5 0 0 0 0 0

�1 62 78 50 101 82

�2 71 84 61 73 59

�3 87 92 111 71 81

Table 4.16: SAP-4.

In (���4), the assignments for first row is �43 = 87. In the second row, all the elements
are 0 , but in the fourth row �41 = 62 is the unique minimum element, so �1 is the
dominating column. Thus for second row �51 = 0 is the assignment. The assignment for
third row is �14 = 101. Last two assignments obtained from the decision matrix

�4 =
�22 �25
�32 �35

= 84 59
92 81

are �22 = 84 and �35 = 81 since tr(�4) > offtr(�4). Hence the fourth simulated sum �4 is �4 = �43 + �51 + �14 + (�22 + �35) = 87 + 0 + 101 + (84 + 81) = 353

(v) The fifth simulated assignment problem (���5) is given in Table 4.17.
�1 �2 �3 �4 �5

�5 0 0 0 0 0

�1 62 78 50 101 82

�2 71 84 61 73 59

�3 87 92 111 71 81

�4 48 64 87 77 80

Table 4.17: SAP-5.

In the first row, all the elements are 0 , but in the second row �13 = 50 is the unique minimum
element, so �3 is the dominating column. Thus for first row, �53 = 0 is the assignment. The
assignments for second and third rows are �14 = 101 and �22 = 84 respectively. The last two
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assignments obtained from the decision matrix �5 =
�31 �35
�41 �45

= 87 81
48 80 are �31 = 87 and

�45 = 8 since tr(�5) > offtr(�5). Hence the fifth simulated sum �5 is

�5 = �53 + �14 + �22 + (�31 + �45) = 0 + 101 + 84 + (87 + 80) = 352.

We have max �1, �2, �3, �4, �5 = 376 = �1, �2, �3 where

(a) �1 = �14 + �22 + �33 + (�45 + �51) = 101 + 84 + 111 + (80 + 0) = 376.
(b) �2 = �22 + �33 + �45 + (�51 + �14) = 84 + 111 + 80 + (0 + 101) = 376.
(c) �3 = �33 + �45 + �51 + (�14 + �22) = 111 + 80 + 0 + (101 + 84) = 376.

In this case, the fifth mechanic is a dummy
and job �1 is assigned to the fifth mechanic,
so this job is declined. The optimal solution
� = �1 = 376 is taken by index priority
concept where the allocation of the
assignments are

�1 → �4; �2 → �2; �3 → �3;

�4 → �5 and �5 → �1

4.4 Minimizing the order of assignment problem
As an application Theorem 2.3 and Theorem 2.4 on has, the confirmed optimal points for the
Minimized assignment problem and Maximized assignment problem can obtained by the following
two rules (�) and (�) respectively to reduced the size of the problem.

(a) row minimum = column minimum for minimized AP,
(b) row maximum = column maximum for maximized AP.

For tie cases, select the first assignment to that element which is unique to both row and column,
then cover its cell. Covering the assignments one by one, we can get a reduced assignment problem
where the rest assignments can be obtained using DAS-technique. The reduced assignment problem
contains the elements where the above two conditions fails according to type of the problem
(minimize or maximize). For instance we take the problem given in Example 4.2 and Example 4.3.

Example 4.4 The cost matrix of the minimized assignment problem, i.e., Example 4.2 is given in
Table 4.3.

�1 �2 �3 �4 �5 Rowminimum

�1 13 8 16 18 19 8

�2 9 15 24 9 12 9

�3 12 9 4 4 4 4

�4 6 12 10 8 13 6

�5 15 17 18 12 20 12

Column minimum 6 8 4 4 4

Table 4.18: Cost matrix: Example 4.2
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In the Table 4.18, the cells satisfying row minimum = column minimum are �33 = 4 (since it is
unique among row minimums), �41 = 6 and �12 = 8 . Last two assignments obtained from the

decision matrix � =
�24 �25
�54 �55

= 9 12
12 20 are �25 = 12 and �54 = 12 since offtr(�) < ��(�).

Hence the simulated sum is

� = �33 + �41 + �12 + (�25 + �54) = 4 + 6 + 8 + (12 + 12) = 42

which is the optimal solution.

The profit matrix of the maximized assignment problem is solved in Example 4.3. In Example 4.5, the
same problem is solved using reduced size concept and DAS technique.

Example 4.5 In the Table 4.19, the cells �14 = 101 and �33 = 111 are satisfying the condition
row maximum = column maximum.

Jobs →

Mechanics ↓

�1 �2 �3 �4 �5 row
maximum

�1 62 78 50 101 82 101

�2 71 84 61 73 59 84

�3 87 92 111 71 81 111

�4 48 64 87 77 80 87

�5 0 0 0 0 0 0

column maximum 87 92 111 101 82

Table 4.19: Profit matrix: Example 4.2

The reduced assignment problem is given in the Table 4.20 as follows.

�1 �2 �5

�2 71 84 59

�4 48 64 80

�5 0 0 0

Table 4.20: Reduced order AP.

where the sum of rows maximums is �� = 84 + 80 + 0 = 164. Applying DAS-technique in Table 4.20,
we get the first simulated sum is �1 = �22 + (�45 + �51) = 84 + (80 + 0) = 164 that equals to �� ,
so the assignments for Table 4.20 are �22 = 84, �45 = 80 and �51 = 0. Hence the assignments for
Table 4.19 are

�14 = 101, �33 = 111, �22 = 84, �45 = 80 and �51 = 0.

The simulated sum is

� = �14 + �33 + [�22 + (�45 + �51)] = 101 + 111 + [84 + (80 + 0)] = 376
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which equals to the optimal solution. The square bracket in � indicates that the assignments are
obtained from the reduced assignment problem.

5 Traveling Salesman Problem
In 1800s, the traveling salesman problem was mathematically formulated by the Irish mathematician
W.R. Hamilton and by the British mathematician Thomas Kirkman. Hamiltons Icosian Game was a
recreational puzzle based on finding a Hamiltonian cycle [2]. The general form of the TSP appears to
have been first studied by mathematicians during the 1930s in Vienna and at Harvard. A traveling
salesman has to visit � places. He has to return to starting place after visiting all other � − 1 places.
If the starting place is �� and before returning to the place �� , last visited place is ��, then the path
for the salesman is ��⋯���� and the simulated sum is �� . If the travelling cost from the place �� to
�� is ���, then travelling salesman problem is to minimize the travelling cost

� =
�=1

�

�
�=1

�

� ������

subject to

�=1

�

� ��� = 1 and
�=1

�

� ��� = 1, ��� = 0 or 1 for all �, � = 1,2, ⋯, �.

5.1 DAST for Travelling Salesman Problems

Since the salesman is not allowed to come back to starting place before visiting all the places, so the
selection column of the starting place should be neglected in the middle of the visit. Since for the
salesman, destination place of one journey is starting place for the next journey, so for DAST, the
selection of assignments is taken accordingly. The process of DAST for travelling salesman problem
for

�� = ���� = (��, ��+1, ⋯, ��, �1, �2, ⋯, ��−1, ��)

are given below:

(a) for 1 ≤ � ≤ �, � ≠ �, find �∗(��, ��) = ��� and cover the ��ℎ column,

(b) for 1 ≤ � ≤ �, � ≠ �, �, find �∗(��, ��) = ���, and cover the ��ℎ column,

(c) for 1 ≤ � ≤ �, � ≠ �, �, �, find �∗(��, ��) = ��� and over the ��ℎ column.

(d) Continue the process. After selecting � − 2 assignments, find the last two

assignments from the decision matrix which contains a starting place �� and another

one is last remained visiting place ��.

(e) The simulated sum �� of the path ��������⋯���� as

�� = ��� + ��� + ��� + ⋯ + ���.

(f) For tie case, dominated column concept will be used.
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5.2 Numerical Examples

The following TSP, multiple choice of path is obtained for the minimum travelling cost.

Example 5.1 Consider the following travelling salesman problem so as to minimize the cost per cycle.

X→

↓X

�1 �2 �3 �4 �5

�1 ∞ 3 6 2 3

�2 3 ∞ 5 2 3

�3 6 5 ∞ 6 4

�4 2 2 6 ∞ 6

�5 3 3 4 6 ∞

Table 5.21: Cost per cycle for traveling salesman.

For destination place, consider column � = �, i.e., �� = �� for � = 1,2,3,4,5.

(a) For SAP-1, the path is �1
2
→
2
→
2
→ �4 = �4

2
→
2
→
2
→ �2 = �2

3
→
3
→
3
→ �5 = �5

3
→
3
→
3
→ �3 = �3

6
→
6
→
6
→ �1 = �1

and the simulated sum is �1 = 16 whose the network is

(b) For SAP-2, the path is �2
2
→
2
→
2
→ �4 = �4

2
→
2
→
2
→ �1 = �1

3
→
3
→
3
→ �5 = �5

4
→
4
→
4
→ �3 = �3

5
→
5
→
5
→ �2 = �2 and

the simulated sum is �2 = 16 whose the network is

(c) For SAP-3, the path is �3
4
→
4
→
4
→ �5 = �5

3
→
3
→
3
→ �1 = �1

2
→
2
→
2
→ �4 = �4

2
→
2
→
2
→ �2 = �2

5
→
5
→
5
→ �3 = �3

and the simulated sum �3 = 16 whose the network is
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(d) For SAP-4, the path is �4
2
→
2
→
2
→ �1 = �1

3
→
3
→
3
→ �2 = �2

3
→
3
→
3
→ �5 = �5

4
→
4
→
4
→ �3 = �3

6
→
6
→
6
→ �4 = �4

and the simulated sum is �4 = 18 whose the network is

(e) For SAP-5, the path is �5
3
→
3
→
3
→ �1 = �1

2
→
2
→
2
→ �4 = �4

2
→
2
→
2
→ �2 = �2

5
→
5
→
5
→ �3 = �3

4
→
4
→
4
→ �5 = �5

and the simulated sum is �5 = 16 whose the network is

Optimal solution of the problem is min �1, �2, �3, �4, �5 = 16 = �1, �2, �3, �5 . Hence the path for
the salesman �(��) are

(1) �(�1): �1
2
→
2
→
2
→ �4

2
→
2
→
2
→ �2

3
→
3
→
3
→ �5

3
→
3
→
3
→ �3

6
→
6
→
6
→ �1

(2) �(�2): �2
2
→
2
→
2
→ �4

2
→
2
→
2
→ �1

3
→
3
→
3
→ �5

4
→
4
→
4
→ �3

5
→
5
→
5
→ �2

(3) �(�3): �3
4
→
4
→
4
→ �5

3
→
3
→
3
→ �1

2
→
2
→
2
→ �4

2
→
2
→
2
→ �2

5
→
5
→
5
→ �3

(4) �(�5): �5
3
→
3
→
3
→ �1

2
→
2
→
2
→ �4

2
→
2
→
2
→ �2

5
→
5
→
5
→ �3

4
→
4
→
4
→ �5.



Reducing The Order Of The Travelling Salesman Problems By Minimin Optimization Theory……..

DOI: 10.9790/5933-1505066388 www.iosrjournals.org 84 | Page

The reduced order TSP is given in the following table where the confirmed paths are �1 → �4 or �4 →
�1 and �2 → �4 or �4 → �2.

→Y

↓X

�1 �2 �3 �4 �5 Rowmin

�1 ∞ 3 6 2 3 2

�2 3 ∞ 5 2 3 2

�3 6 5 ∞ 6 4 4

�4 2 2 6 ∞ 6 2

�5 3 3 4 6 ∞ 3

Column min 2 2 4 2 3

Table 5.22: Cost per cycle for traveling salesman..

The following traveling salesman problem is unsolvable using the rules of Hungarian method. To
solve the problem, additional conditions is required. Using DAST, the problem is solved without
taking additional conditions.

Example 5.2 Consider the following traveling salesman problem so as to minimize the cost per cycle
given in Table 5.23.

X→

↓X

�1 �2 �3 �4 �5

�1 ∞ 4 10 14 2

�2 12 ∞ 6 10 4

�3 16 14 ∞ 8 14

�4 24 8 12 ∞ 10

�5 2 6 4 16 ∞

Table 5.23: Cost per cycle for travelling salesman.

For destination place, consider column � = �, i.e., �� = �� for � = 1,2,3,4,5.

(a) For SAP-1, the path is

�1
2
→
2
→
2
→ �5 = �5

4
→
4
→
4
→ �3 = �3

8
→
8
→
8
→ �4 = �4

8
→
8
→
8
→ �2 = �2

12
→
12
→
12
→ �1 = �1

and the simulated sum is �1 = 34 whose the network is given in Figure 5.9.
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(b) For SAP-2, the path is

�2
4
→
4
→
4
→ �5 = �5

2
→
2
→
2
→ �1 = �1

10
→
10
→
10
→ �3 = �3

8
→
8
→
8
→ �4 = �4

8
→
8
→
8
→ �2 = �2

and the simulated sum is �2 = 32 whose the network is given in Figure 5.10.

(c) For SAP-3, the path is

�3
8
→
8
→
8
→ �4 = �4

8
→
8
→
8
→ �2 = �2

4
→
4
→
4
→ �5 = �5

2
→
2
→
2
→ �1 = �1

10
→
10
→
10
→ �3 = �3

and the simulated sum �3 = 32 whose the network is given in Figure 5.11.

(d) For SAP-4, the path is �4
8
→
8
→
8
→ �2 = �2

4
→
4
→
4
→ �5 = �5

2
→
2
→
2
→ �1 = �1

10
→
10
→
10
→ �3 = �3

8
→
8
→
8
→ �4 = �4

and the simulated sum is �4 = 32 whose the network is given in Figure 5.12.

(e) For SAP-5, the path is �5
2
→
2
→
2
→ �1 = �1

4
→
4
→
4
→ �2 = �2

6
→
6
→
6
→ �3 = �3

8
→
8
→
8
→ �4 = �4

10
→
10
→
10
→ �5 = �5

and the simulated sum is �5 = 30 whose the network is given in Figure 5.13.
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Optimal solution of the problem is min �1, �2, �3, �4, �5 = 30 = �5 . Hence the path for the

salesman is �5
2
→
2
→
2
→ �1

4
→
4
→
4
→ �2

6
→
6
→
6
→ �3

8
→
8
→
8
→ �4

10
→
10
→
10
→ �5 . The reduced order TSP is given in the following table

5.24 where the confirmed paths are �1 → �5 or �5 → �1 and �3 → �4.

→Y

↓X

�1 �2 �3 �4 �5 Rowmin

�1 ∞ 4 10 14 2 2

�2 12 ∞ 6 10 4 4

�3 16 14 ∞ 8 14 8

�4 24 8 12 ∞ 10 8

�5 2 6 4 16 ∞ 2

Column min 2 4 4 8 2

Table 5.24: Reduced order of TSP Example 5.2.

6 Result Analysis
In this section the results obtained by DAST are compared with results obtained by other

existing methods with their optimal solutions. The size of the minimized assignment problem given
in Example 4.2 is reduced which is shown in Example 4.4 and is solved in less number of steps. The
size of the maximized assignment problem given in Example 4.3 (Rectangular AP) is reduced which is
shown in Example 4.5 and is solved in less number of steps. The following Table 6.25 and Table 6.26
summarize all the results of Example 4.2, Example 4.3, Example 5.1 and Example 5.2.

Methods

Examples Hungarian Method DAST

Ex. 4.2 42 42

Ex. 4.3 376 376

Ex. 5.1 16 16

Ex. 5.2 30 30

Table 6.25: Optimal Solution.
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Methods

Examples Hungarian Method DAST(Reduced Order)

Ex. 4.2 64 47(29)

Ex. 4.3 69 29

Ex. 5.1 162 30

Ex. 5.2 167 30

Table 6.26: Number of Steps to find optimal solution.

The optimal favorable matching of a network N by proposed DAST and Hungarian method are
coinciding with the same numerical value. The time complexity of proposed logical method is fairly
less than as compare to complexity of Hungarian method. Here total number of algebraic
calculations needed to convert the input data to the optimal solution is multiple of �2, i.e., �(�2)
under the assumption that all algebraic calculations can take equal time.
7 Conclusion
In this paper, the following conclusions are obtained.

(i) The minimin optimization theory is developed to reduce the order of the minimized
assignment problems and to solve by the DAS technique.

(ii) The maximax optimization theory is developed to reduce the order of the maximized
assignment problem and to solve by the DAS technique.

(iii) The process of DAS technique gives a simple approach to solve the problems.
(iv)In DAS technique, one can get the optimal solutions of the assignment problems

fastly in a very simple way.
(v) This technique gives the shortest path for the traveling salesman problems (TSP)

according to cyclic nonrepeated permutation form of the destination selection
without any complexity.

(vi)The advantage of this method that more than one group of assignment solutions can
be obtained to find the optimal solution. In case of TSP, more than one group of
paths can be obtained to get optimal solution.
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