Some identities on Strongly Multiplicative Function

D. Sarada Devi
Associate Professor, Department of Mathematics, Government Degree College for Women, Begumpet, Hyderabad-500016, Telangana - India.

Abstract

A real or complex valued function defined on the set of all positive integers is called an arithmetic function. An arithmetic function f is said to be multiplicative function in one argument iff is not identically zero and $f(m n)=$ $f(m) f(n)$ whenever $(m, n)=1$. The objective of this paper is to prove few useful identities using strongly multiplicative functions and using K - Prime integers.

Keywords: Arithmetic function, Complex valued function, Multiplicative function, K - prime integers
Date of Submission: 14-06-2024
Date of Acceptance: 26-06-2024

I. Introduction

An Arithmetic function is a real or complex valued function defined on the set of all positive integers. An arithmetic function f is said to be multiplicative function in one argument if f is not identically zero and $f(m n)$ $=f(m) f(n)$ whenever $(m, n)=1$. An arithmetic function is said to be completely multiplicative function if f is not identically zero and $f(m n)=f(m) f(n)$ for all m, n. The function $f(m, n)$ of two variables defined for pairs of positive integers m and n is said to be multiplicative in both the arguments m and n if $f(1,1)=1$ and $f\left(m_{1} m_{2}, n_{1} n_{2}\right)=$ $\mathrm{f}\left(\mathrm{m}_{1}, \mathrm{~m}_{2}\right) \mathrm{f}\left(\mathrm{m}_{2}, \mathrm{n}_{2}\right)$ where $\left(\mathrm{m}_{1} \mathrm{n}_{1}, \mathrm{~m}_{2} \mathrm{n}_{2}\right)=1$.

The Euler Totient function $\varphi(\mathrm{n})$ is defined to be the number of positive integers not exceeding n which are relatively prime to n. It is given by
(1.1) $\quad \emptyset(n)=\sum_{d / n(d, n)=1}$
1.2 Definition: Strongly Multiplicative function: A multiplicative arithmetic function f is said to be strongly multiplicative function if for every prime P , we have $f(p)=f\left(p^{2}\right)=f\left(p^{3}\right)=\ldots \ldots \ldots \ldots$

If a and b are integers, not both zero, and k is any integer greater than 1 , then $(a, b)_{k}$ denotes the largest common divisor of a and b which is also $a k^{\text {th }}$ power. This will be referred to as $k^{\text {th }}$ power greatest common divisor of a and b.
1.3 Definition: If $(a, b)_{k}=1$, then a is said to be relatively K-Prime to b.
1.4 Ecford Cohen [3] introduced a function $\emptyset_{k}(n)$ which denotes the number of non negative integers less than N^{k} which are relatively K-Prime to N^{k}.
(1.5) $\quad \sum_{d / n} \quad \emptyset_{k}(N / d)=N^{k}$
1.6 Definition: The Mobius function $\mu(\mathrm{n})$ is defined by

$$
\mu(n)=\left\{1 \quad \text { if } n=1(-1)^{k} \text { if } n=p_{1} p_{2} \ldots p_{k}, 0 \quad\right. \text { otherwise }
$$

where p_{i} 's are distinct primes.
By the Mobius inversion formula, we get that

$$
\begin{equation*}
\emptyset_{k}(N)=\sum_{d / N} \quad d^{k} \mu(N / d) \tag{1.7}
\end{equation*}
$$

II. Preliminaries

We will derive few preliminary lemmas which will be used to derive the final result.
2.1 lemma: $\phi_{k}(r)$ is multiplicative function.

Proof: In view of (1.5), we get

$$
\phi_{k}(r)=\sum_{(r)} \quad d^{k} \mu\left(\frac{r}{d}\right)
$$

In order to prove multiplicative, we have to show that
$\phi_{k}\left(r_{1} r_{2}\right)=\phi_{k}\left(r_{1}\right) \phi_{k}\left(r_{2}\right)$ whenever $\left(r_{1} r_{2}\right)=1$
Suppose that r_{1}, r_{2} are positive integers such that $\left(r_{1} r_{2}\right)=1$. Then

$$
\begin{equation*}
\phi_{k}\left(r_{1} r_{2}\right)=\sum_{\left(r_{1} r_{2}\right)} \quad d^{k} \mu\left(\frac{r_{1} r_{2}}{d}\right) \tag{2.2}
\end{equation*}
$$

Every divisor d of $r_{1} r_{2}$ can be uniquely written as $\mathrm{d}=d_{1} d_{2}$ where $\frac{d_{1}}{r_{1}}$ and $\frac{d_{2}}{r_{2}}$
Then (2.2) can be written as

$$
\begin{gathered}
\phi_{k}\left(r_{1} r_{2}\right)=\sum_{\left(r_{1} r_{2}\right)}\left(d_{1} d_{2}\right)^{k} \mu\left(\frac{r_{1} r_{2}}{d_{1} d_{2}}\right) \\
=\sum_{\left(r_{1}\right)} \sum_{\left(r_{2}\right)} d_{1}^{k} d_{2}^{k} \mu\left(\frac{r_{1}}{d_{1}}\right) \mu\left(\frac{r_{2}}{d_{2}}\right) \\
=\left(\sum_{\left(r_{1}\right)} d_{1}^{k} \mu\left(\frac{r_{1}}{d_{1}}\right)\right)\left(\sum_{\left(r_{2}\right)} d_{2}^{k} \mu\left(\frac{r_{2}}{d_{2}}\right)\right) \\
=\phi_{k}\left(r_{1}\right) \phi_{k}\left(r_{2}\right)
\end{gathered}
$$

Proving the lemma.
2.3 Lemma: Let $f(r)=\frac{r^{k}}{\phi_{k}(r)}$. Then $f(r)$ is strongly multiplicative function.

Proof: First we see that f is a multiplicative function.
That is, $f\left(r_{1} r_{2}\right)=f\left(r_{1}\right) f\left(r_{2}\right)$
Consider $\quad f\left(r_{1} r_{2}\right)=\frac{\left(r_{1} r_{2}\right)^{k}}{\emptyset_{k}\left(r_{1} r_{2}\right)}$

$$
\begin{aligned}
& =\frac{r_{1}^{k} r_{2}^{k}}{\left(\phi_{k}\left(r_{1}\right) \phi_{k}\left(r_{2}\right)\right)} \quad \text { in view of lemma } 2.1 \\
& =\left(\frac{r_{1}^{k}}{\phi_{k}\left(r_{1}\right)}\right)\left(\frac{r_{2}^{k}}{\phi_{k}\left(r_{2}\right)}\right) \\
& =f\left(r_{1}\right) f\left(r_{2}\right)
\end{aligned}
$$

Thus $f(r)$ is multiplicative function.
Also, we have for every prime p ,

$$
\begin{aligned}
& \quad f(p)=\frac{P^{k}}{\phi_{k}(P)} \\
& =\frac{P^{k}}{\sum_{\bar{d}} d^{k} \mu\left(\frac{p}{d}\right)} \\
& =\frac{P^{k}}{1^{k} \mu(P)+P^{k} \mu(1)} \\
& =\frac{P^{k}}{P^{k}-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& \quad f\left(P^{2}\right)=\frac{P^{2 k}}{\phi_{k}\left(P^{2}\right)} \\
& =\frac{P^{2 k}}{\Sigma_{\left(p^{2}\right)} d^{k} \mu\left(\frac{p^{2}}{d}\right)} \\
& =\frac{P^{2 k}}{1^{k} \mu\left(P^{2}\right)+P^{k} \mu(P)+P^{2 k} \mu(1)} \\
& =\frac{P^{2 k}}{-P^{k}+P^{2 k}} \\
& =\frac{P^{k}}{P^{k}-1}
\end{aligned}
$$

Similarly it can be shown that

$$
f\left(P^{3}\right)=f\left(P^{4}\right)=\cdots=\frac{P^{k}}{P^{k}-1}
$$

Thus proving that $f(r)$ is strongly multiplication function.

III. Main Result

3.1 Theorem: Let $g(r)=\frac{1}{\phi_{k}(r)}$. Then $\quad \frac{p^{k}}{\phi_{k}(P)}-1=\frac{1}{\phi_{k}(p)}$

Proof: Consider $\quad g(p)=\frac{1}{\phi_{k}(p)}$

$$
\begin{aligned}
& =\frac{1}{\sum_{\frac{d}{p}} d^{k} \mu\left(\frac{P}{d}\right)}, \text { from }(1.5) \\
& =\frac{1}{1^{k} \mu(P)+P^{k} \mu(1)} \\
& =\frac{1}{P^{k}-1}
\end{aligned}
$$

$$
\text { and consider } \begin{aligned}
& \frac{P^{k}}{\phi_{k}(P)}-1 \\
& =\frac{P^{k}}{P^{k}-1}-1 \\
& =\frac{1}{P^{k}-1}
\end{aligned}
$$

Thus proving the result.
3.2 Theorem:

$$
\sum_{(r)} \frac{d^{k}}{\phi_{k}(d)} \mu\left(\frac{r}{d}\right)=\mu(r) \mu\left(\frac{r}{t}\right) \frac{1}{\phi_{k}\left(\frac{r}{t}\right)}
$$

Proof: In view of lemma 2.3, we have $f(r)=\frac{r^{k}}{\phi_{k}(r)}$ which gives $f(d)=\frac{d^{k}}{\phi_{k}(d)}$
and ([5], Theorem 3.1) gives for $n \geq 1, m \geq 1$, we have

$$
\begin{align*}
\sum \quad f(d) \mu\left(\frac{n}{d}\right)=\mu(n) \mu\left(\frac{n}{t}\right) h\left(\frac{n}{t}\right), \text { where } t & =(n, m) \tag{3.3}\\
d \mid & n \\
(d, m) & =1
\end{align*}
$$

$\operatorname{using}(3.3), \quad \sum_{(r)} \quad \frac{d^{k}}{\phi_{k}(d)} \mu\left(\frac{r}{d}\right)=\mu(r) \mu\left(\frac{r}{t}\right) h\left(\frac{n}{t}\right)$

$$
=\mu(r) \mu\left(\frac{r}{t}\right) \frac{1}{\phi_{k}\left(\frac{r}{t}\right)} \text {, from theorem 3.1. }
$$

Hence the result.

References

[1]. Apostel, T.M. An Introduction to Analytical Number Theory, Springer International Student edition, Narosa Publishing House.
[2]. Brown, T. C. and L. C. Hsu, J. Wang, and P. J.-S. Shiue, "On a certain kind of generalized number theoretical Mobius function", The Mathematical Scientist 25 (2000), no. 2, 72-77.
[3]. Eckford Cohen, Trignometric Sums in Elementary Number theory, American Mathematical Monthly, 1959, pp 105-117.
[4]. Eckford Cohen, Arithmetical Inversion Formulas, Canadian J. Math., 12 (1960), pp 399-409.
[5]. McCarthy, P.J. Some Remarks on Arithmetical Identities, Amerrican Math., Monthly, 67 (1956) pp 539-548.
[6]. Nageswara Rao, K. On Jordan and its extension, Math Student, 29 (1961) 27.
[7]. Sierpinski, W., A Selection of Problems in the Theory of Numbers, NewYork; 1964.
[8]. Subbarao, M.V. The Brauer - Rademacher identity, American Math, Monthly, 72 (1965), pp 135-138.

