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Abstract: Data structure is the entity which represents the shape geometry according to mesh topology. In this 

paper, we represent the geometry of some mesh shapes by using Matlab tools. This used data structure can be 

implemented to solve engineering physical problems. We create a Matlab code based on the CGAL Delaunay 

triangulation code. This code gives coordinates nodes and a shape of the mesh elements according to a given 
shape coordinates. Despite of the high number of commercial mesh generation software, their methodology is 

not specified. While our work gives a methodology by representing an explicit use of mesh generation. 
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I. Introduction 
The mesh generation is the first step to solve many engineering problems [1-9-11]. Due to the 

complexity of technical objects and the high cost of creating and testing prototypes, modeling [10] and 

simulation are the solutions for solving these problems and also for optimizing time. The data structures [2-4] 

provide the backbone for physical analysis of the finite element method. This latter is based on a geometrical 
modeling [10]. On the basis of the definition given by wikipedia, a mesh also called an unstructured grid is a 

tessellation of a part of the Euclidean plane or Euclidean space by simple shapes, such as 2D-triangles [5] or 

3D-tetrahedra [6] in an irregular pattern. Grids of this type may be used in finite element analysis when the 

analysed input has an irregular shape. The  mainly assumption of this work is that on the basis of simple shapes 

we can mesh more complex shapes. 

 

II. Algorithm 

A. Technics 
The use of an iterative algorithm to triangulate different shapes is the technical method developed here 

and it is based on the work of Persson [7]. The Matlab command delaunayn gives the Delaunay Tessellation [8], 

such that a set of simplices is obtained. Simplices are triangles in 2D and tetrahedra in 3D. 

We report in the following the Persson's flowchart [7], 

dim=size(box,2); 

ptol=.001; ttol=.1; L0mult=1+.4/2^(dim-1); deltat=.1; 

geps=1e-1*h; deps=sqrt(eps)*h; 

% 1. Create initial distribution in bounding box 

if dim==1 

p=(box(1):h:box(2))'; 

else 

cbox=cell(1,dim); 

for ii=1:dim 

cbox{ii}=box(1,ii):h:box(2,ii); 

end 

pp=cell(1,dim); 

[pp{:}]=ndgrid(cbox{:}); 

p=zeros(prod(size(pp{1})),dim); 

for ii=1:dim 

p(:,ii)=pp{ii}(:); 

end 

end 

% 2. Remove points outside the region, apply the 

rejection method 

p=p(feval(fdist,p,varargin{:})<geps,:); 

r0=feval(fh,p); 

p=[fix; p(rand(size(p,1),1)<min(r0)^dim./r0.^dim,:)]; 

N=size(p,1); 

count=0; 

p0=inf; 

while 1 

% 3. Retriangulation by Delaunay 

if max(sqrt(sum((p-p0).^2,2)))>ttol*h 

p0=p; 

% 5. Graphical output of the current mesh 

if dim==2 

trimesh(t,p(:,1),p(:,2),zeros(N,1)) 

view(2),axis equal,axis off,drawnow     

elseif dim==3 

if mod(count,5)==0 

simpplot(p,t,'p(:,2)>0'); 

title(['Retriangulation #',int2str(count)]) 

drawnow 

end 

else 

disp(sprintf('Retriangulation #%d',count)) 

end 

count=count+1; 

end  

% 6. Move mesh points based on edge lengths L and forces 

F 

bars=p(pair(:,1),:)-p(pair(:,2),:); 

L=sqrt(sum(bars.^2,2)); 

L0=feval(fh,(p(pair(:,1),:)+p(pair(:,2),:))/2); 

L0=L0*L0mult*(sum(L.^dim)/sum(L0.^dim))^(1/dim); 

F=max(L0-L,0); 

Fbar=[bars,-bars].*repmat(F./L,1,2*dim); 

dp=full(sparse(pair(:,[ones(1,dim),2*ones(1,dim)]), ... 

ones(size(pair,1),1)*[1:dim,1:dim], ... 

Fbar,N,dim)); 

dp(1:size(fix,1),:)=0; 

p=p+deltat*dp; 

% 7. Bring outside points back to the boundary 

d=feval(fdist,p,varargin{:}); ix=d>0; 
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t=delaunayn(p); 

pmid=zeros(size(t,1),dim) 

for ii=1:dim+1 

pmid=pmid+p(t(:,ii),:)/(dim+1); 

end 

t=t(feval(fdist,pmid,varargin{:})<-geps,:); 

% 4. Describe each edge by a unique pair of nodes 

pair=zeros(0,2); 

localpairs=nchoosek(1:dim+1,2); 

for ii=1:size(localpairs,1) 

pair=[pair;t(:,localpairs(ii,:))]; 

end 

pair=unique(sort(pair,2),'rows'); 

gradd=zeros(sum(ix),dim); 

for ii=1:dim 

a=zeros(1,dim); 

a(ii)=deps; 

d1x=feval(fdist,p(ix,:)+ones(sum(ix),1)*a,varargin{:}); 

gradd(:,ii)=(d1x-d(ix))/deps; 

end 

p(ix,:)=p(ix,:)-d(ix)*ones(1,dim).*gradd; 

% 8. Termination criterion 

maxdp=max(deltat*sqrt(sum(dp(d<-geps,:).^2,2))); 

if maxdp<ptol*h, break; end 

end 

 

B. Reproductibility 

The obtained result is based on the function code fd10 given below. This function determines 

intersections of six planes. Firstly, the intersection between the plane passing through x-axis at point 2 and the 

plane passing through z-axis at point -2. Secondly, the plane passing through z-axis at point 2 and the first one. 

Thirdly, the plane passing through x-axis at point -2 and the second one. Fourthly, the plane passing through y-

axis at point 2 and the third one. Fifthly, the plane passing through y-axis at point -2 and the fourth one. 

These five intersections give a parallelepiped shape as shown in (Fig. 1). The function code fd10 

determines the difference between the parallelepiped distance function and the sphere distance function. The 

function code dsphere is given in [7] and it is assumed here that the coordinates of central position are xc=0, 

yc=0, and zc=0, with the radius of sphere equals to 1.75. 

function d=fd10(p) 

x=p(:,1); 

y=p(:,2); 
z=p(:,3); 

d1=x-2; 

d2=-x-2; 

d3=y-2; 

d4=-y-2; 

d5=z-2; 

d6=-z-2; 

d=dintersect(dintersect(dintersect(dintersect(dintersect(d1,d6),d5),d2),d3),d4); 

d=ddiff(d,dsphere(p,0,0,0,1.75)); 

end 

 

III. Methodology 
The geometry used is relatively simple because it shows how basic shapes are created and meshed. In 

this way, we can create more complex shapes. The methodology is based on the work of Lang [3] and Persson 

[7] where the initial grid is generated by the ndgrid Matlab command. This latter generate arrays by 

transforming the domain specified as bbox. The simulation data are presented in (Tab. 1), (Tab. 2.) and (Tab. 

3.). The Delaunay tesselation is assumed by the delaunayn Matlab command, which computes a set of simplexes 

such as any p-data points, where p design positions, are contained in circumspheres of the simplexes (Tab. 7). 

The set of simplexes forms the Delaunay tessellation. p is an m-by-3 array representing m points (positions) in 

3-dimensional space. t is a number of simplexes-by-(3+1) array where each row contains the indices into p of 

the vertices of the corresponding simplexes (Tab. 8). 

 

IV. Results and Discussions 

A. Parallelepiped With Spherical Cavity Mesh 
The function used has the following form 

[p,t]=x3ddiffparallelepiped(@fd10,@fh10,0.25,[-2,-2,-2 ;2,2,2 ],[2,-2,-2 ;2,2,-2 ;-2,2,-2 ;-2,-2,-2 ;2,-2,2 ;2,2,2 ;-

2,2,2 ;-2,-2,2 ;1,1,1 ;-1,-1,1 ;-2,-2,-2]); where the initial length edge is equal to 0.25 with 12 fixed positions 

(nodes). The bbox computational domain [xmin, ymin, zmin ; xmax, ymax, zmax] is taken as [-2,-2,-2 ;2,2,2]. 

Indeed, this function integrates our  fd10-functions and fh10-function elaborated by Persson [7]. Thus, the result 

related to a parallelepiped with a spherical cavity is presented in (Fig. 1). 
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Mesh 

Inputs Definitions and features 

Shape Parallelepiped with spherical cavity (hole) 

Boundaries  

xmin, xmax, ymin, ymax, zmin, zmax 

-2 2 -2 2 -2 2 

Computational domain bbox 

xmin,ymin,zmin ; xmax,ymax,zmax 

-2 2 -2 2 -2 2 

xc, yc, zc, r 0 0 0 1.75   

Initial length edge 0.25 

   Fixed nodes X 

Y 

Z 

2 

-2 

-2 

2 

2 

-2 

-2 

2 

-2 

-2 

-2 

-2 

2 

-2 

2 

2 

2 

2 

-2 

2 

2 

-2 

-2 

2 

1 

1 

1 

2 

2 

2 

-1 

-1 

1 

-2 

-2 

-2 

Tab. 1. The simulation data for the parallelepiped with spherical cavity. 

 

The result is based on two secondary results, namely a parallelepiped shape and a spherical shape (Fig. 

2) and (Fig. 3) which we will detailed in the next subsections. Otherwise, the mesh obtained for the shape (Fig. 

1) contains 15236 simplexes and 3567 nodes (Tab. 2) which is obtained after 105 iterations. The three-

dimensional simplexes used are 3D-tetrahedra. The initial edge length is equal to 0.25 (Tab. 1). 

 
Fig. 1. Parallelepiped mesh with a spherical cavity shape. 

 

The data structure obtained is in good agreement with finite element analysis [10]. The easily 

manipulation and the usefulness obtained data are the mainly result. Thus, it could be implemented in other 

software devoted to solve more physical problems. 

Outputs Definitions and features 

Number of iterations 105 

Number of nodes 3567 

Tetrahedron simplexes number 15236 

Tab. 2. Outputs of the parallelepiped with spherical cavity simulation. 

 

B. Parallelepiped Mesh 

For the parallelepiped mesh generation, a three-dimensional domain bbox=[-2,-2,-2 ;2,2,2] is used 
where the initial length edge equals to 0.9 with the same 12 fixed nodes as below (Tab. 3). 

 

 

 

 

 

 



Three-dimensional mesh generation using Delaunay triangulation 

www.iosrjournals.org                                                    70 | Page 

Mesh 

Inputs Definitions and features 

Shape Parallelepiped 

Boundaries  

xmin, xmax, ymin, ymax, zmin, zmax 

-2 2 -2 2 -2 2 

Computational domain bbox 

xmin,ymin,zmin ; xmax,ymax,zmax 

-2 -2 -2 2 2 2 

Initial length edge 0.9 

    Fixed nodes 

X 

Y 

Z 

2 

-2 

-2 

2 

2 

-2 

-2 

2 

-2 

-2 

-2 

-2 

2 

-2 

2 

2 

2 

2 

-2 

2 

2 

-2 

-2 

2 

1 

1 

1 

2 

2 

2 

-1 

-1 

1 

-2 

-2 

-2 

Tab. 3. The simulation data for the parallelepiped. 

 
The mesh generation simulation is obtained after 32 iterations. The nodes number is 136, which is equivalent to 

the positions number, and we have 421 simplexes as shown in the following (Tab. 4). 

Outputs Definitions and features 

Number of iterations 32 

Number of nodes 136 

Tetrahedron simplexes number 421 

Tab. 4. Outputs of the parallelepiped simulation. 

 

The mesh obtained is given in (Fig. 2). This result is relatively uniform despite of the use of huniform found by 

Persson [7]. 

 
Fig. 2. Parallelepiped mesh shape. 

C. Spherical Mesh 

For the parallelepiped mesh generation, a three-dimensional domain bbox=[-1,-1,-1 ;1,1,1] is used where the 

initial length edge is equal to 0.25 without any fixed nodes (Tab. 5). 
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Mesh 

Inputs Definitions and features 

Shape Sphere 

Boundaries  

xmin, xmax, ymin, ymax, zmin, zmax 

-1 1 -1 1 -1 1 

Computational domain bbox 

xmin,ymin,zmin ; xmax,ymax,zmax 

-1 -1 -1 1 1 1 

xc, yc, zc, r 0 0 0 1 - - 

Initial length edge 0.25 

Tab. 5. The simulation data for the sphere. 

 

The mesh generation simulation is obtained after 63 iterations. The nodes number is 257, which is equivalent to 

the positions number, and we have 1070 simplexes as shown in the following table (Tab. 6),  

Outputs Definitions and features 

Number of iterations 63 

Number of nodes 257 

Tetrahedron simplexes number 1070 

Tab. 6. Outputs for the sphere simulation. 

 

The mesh obtained is given in the following where this result exhibits a good uniformity (Fig. 3). 

 
Fig. 3. Spherical mesh shape. 

 
P positions (coordinates) 

x y z  x y z 
2 

2 

-2 

-2 

2 

2 

-2 

-2 

1,01036297196570 

1,01036297196570 

… 

-2 

2 

2 

-2 

-2 

2 

2 

-2 

1,01036297196570 

-1,01036297089585 

… 

 

-2 

-2 

-2 

-2 

2 

2 

2 

2 

1,01036297196570 

-

1,01036297089585 

… 

 

 

 

… from 1st 

position to 

position 

3567 … 

 

… 

-0,112954710440458 

0,144553927627283 

0,371665814462710 

0,576635291365136 

0,832875071008775 

1,08504943688351 

1,34546139599652 

1,55927213927976 

1,79650731437846 

2 

… 

2 

2,00931137294874 

2 

2 

2,01229339406564 

2,01140773837162 

2 

2,00955097084731 

2 

2 

… 

2,01059228892260 

2 

2,00956309429855 

2,00926876269988 

2 

2 

2,00852791430579 

2 

2,01075774373259 

2 

Tab. 7. Example of data structures concerning positions of the parellelepiped with spherical cavity mesh shape. 
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t simplexes (the tetrahedra vertices) 

P1 P2 P3 P4  P1 P2 P3 P4 

572 

572 

1971 

1971 

318 

318 

571 

571 

571 

1816 

… 

238 

282 

1826 

1826 

4 

29 

572 

588 

588 

1817 

… 

282 

588 

1817 

1827 

302 

302 

588 

572 

282 

1826 

… 

2 

299 

1970 

1817 

301 

4 

823 

282 

299 

1970 

… 

 

 

 

…from simplexe 1 to 

simplexe 15236 … 

 

… 

2022 

2022 

2022 

2022 

1078 

1078 

1078 

1078 

1078 

1078 

… 

2021 

1895 

1895 

2039 

1269 

1077 

1269 

1095 

1287 

1077 

… 

2039 

1877 

1878 

1895 

1270 

1269 

1287 

1077 

1095 

1095 

… 

2038 

2038 

1877 

2038 

1287 

1094 

1094 

1094 

1094 

858 

Tab. 8. Example of data structures concerning the tetrahedra vertices of the parellelepiped with spherical cavity 

mesh shape. 

 

Engineers can focus on solving problems with high accuracy [3]. This can present a gain of effort and a 

converging solution to be applicable for optimizing funds, time, materials and gives to wide public better 

products with minimal cost. 

 

V. Conclusion 
The simulation of a parallelepiped with spherical cavity has achieved the three-dimensional mesh. 

Results analysis demonstrated that the tetrahedral elements give a better uniformity in the case of spherical 

shapes. Thus, the results obtained in this paper allow us to suggest that our technical method for meshing could 

be applied to any form. Consequently, several engineering areas could benefit from our results to mesh the 

forms, such as, finite elements analysis, mechanics, electromagnetism, diffusion, fluid dynamics, chemistry and 

so on. 
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