
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 6 Ver. V (Nov- Dec. 2014), PP 67-72
www.iosrjournals.org

www.iosrjournals.org 67 | Page

Three-dimensional mesh generation using Delaunay triangulation

1
Essaid El Kennassi and

2
Lahbib Bousshine

 Laboratoire des Technologies de Construction et Systèmes Industriels, Mechanics Department, ENSEM,

Université Hassan II Ain Chock, Casablanca, Morocco.

Abstract: Data structure is the entity which represents the shape geometry according to mesh topology. In this

paper, we represent the geometry of some mesh shapes by using Matlab tools. This used data structure can be

implemented to solve engineering physical problems. We create a Matlab code based on the CGAL Delaunay

triangulation code. This code gives coordinates nodes and a shape of the mesh elements according to a given
shape coordinates. Despite of the high number of commercial mesh generation software, their methodology is

not specified. While our work gives a methodology by representing an explicit use of mesh generation.

Keywords: CGAL, Matlab, Mesh Generation, Methodology

I. Introduction
The mesh generation is the first step to solve many engineering problems [1-9-11]. Due to the

complexity of technical objects and the high cost of creating and testing prototypes, modeling [10] and

simulation are the solutions for solving these problems and also for optimizing time. The data structures [2-4]

provide the backbone for physical analysis of the finite element method. This latter is based on a geometrical
modeling [10]. On the basis of the definition given by wikipedia, a mesh also called an unstructured grid is a

tessellation of a part of the Euclidean plane or Euclidean space by simple shapes, such as 2D-triangles [5] or

3D-tetrahedra [6] in an irregular pattern. Grids of this type may be used in finite element analysis when the

analysed input has an irregular shape. The mainly assumption of this work is that on the basis of simple shapes

we can mesh more complex shapes.

II. Algorithm

A. Technics
The use of an iterative algorithm to triangulate different shapes is the technical method developed here

and it is based on the work of Persson [7]. The Matlab command delaunayn gives the Delaunay Tessellation [8],

such that a set of simplices is obtained. Simplices are triangles in 2D and tetrahedra in 3D.

We report in the following the Persson's flowchart [7],

dim=size(box,2);

ptol=.001; ttol=.1; L0mult=1+.4/2^(dim-1); deltat=.1;

geps=1e-1*h; deps=sqrt(eps)*h;

% 1. Create initial distribution in bounding box

if dim==1

p=(box(1):h:box(2))';

else

cbox=cell(1,dim);

for ii=1:dim

cbox{ii}=box(1,ii):h:box(2,ii);

end

pp=cell(1,dim);

[pp{:}]=ndgrid(cbox{:});

p=zeros(prod(size(pp{1})),dim);

for ii=1:dim

p(:,ii)=pp{ii}(:);

end

end

% 2. Remove points outside the region, apply the

rejection method

p=p(feval(fdist,p,varargin{:})<geps,:);

r0=feval(fh,p);

p=[fix; p(rand(size(p,1),1)<min(r0)^dim./r0.^dim,:)];

N=size(p,1);

count=0;

p0=inf;

while 1

% 3. Retriangulation by Delaunay

if max(sqrt(sum((p-p0).^2,2)))>ttol*h

p0=p;

% 5. Graphical output of the current mesh

if dim==2

trimesh(t,p(:,1),p(:,2),zeros(N,1))

view(2),axis equal,axis off,drawnow

elseif dim==3

if mod(count,5)==0

simpplot(p,t,'p(:,2)>0');

title(['Retriangulation #',int2str(count)])

drawnow

end

else

disp(sprintf('Retriangulation #%d',count))

end

count=count+1;

end

% 6. Move mesh points based on edge lengths L and forces

F

bars=p(pair(:,1),:)-p(pair(:,2),:);

L=sqrt(sum(bars.^2,2));

L0=feval(fh,(p(pair(:,1),:)+p(pair(:,2),:))/2);

L0=L0*L0mult*(sum(L.^dim)/sum(L0.^dim))^(1/dim);

F=max(L0-L,0);

Fbar=[bars,-bars].*repmat(F./L,1,2*dim);

dp=full(sparse(pair(:,[ones(1,dim),2*ones(1,dim)]), ...

ones(size(pair,1),1)*[1:dim,1:dim], ...

Fbar,N,dim));

dp(1:size(fix,1),:)=0;

p=p+deltat*dp;

% 7. Bring outside points back to the boundary

d=feval(fdist,p,varargin{:}); ix=d>0;

Three-dimensional mesh generation using Delaunay triangulation

www.iosrjournals.org 68 | Page

t=delaunayn(p);

pmid=zeros(size(t,1),dim)

for ii=1:dim+1

pmid=pmid+p(t(:,ii),:)/(dim+1);

end

t=t(feval(fdist,pmid,varargin{:})<-geps,:);

% 4. Describe each edge by a unique pair of nodes

pair=zeros(0,2);

localpairs=nchoosek(1:dim+1,2);

for ii=1:size(localpairs,1)

pair=[pair;t(:,localpairs(ii,:))];

end

pair=unique(sort(pair,2),'rows');

gradd=zeros(sum(ix),dim);

for ii=1:dim

a=zeros(1,dim);

a(ii)=deps;

d1x=feval(fdist,p(ix,:)+ones(sum(ix),1)*a,varargin{:});

gradd(:,ii)=(d1x-d(ix))/deps;

end

p(ix,:)=p(ix,:)-d(ix)*ones(1,dim).*gradd;

% 8. Termination criterion

maxdp=max(deltat*sqrt(sum(dp(d<-geps,:).^2,2)));

if maxdp<ptol*h, break; end

end

B. Reproductibility

The obtained result is based on the function code fd10 given below. This function determines

intersections of six planes. Firstly, the intersection between the plane passing through x-axis at point 2 and the

plane passing through z-axis at point -2. Secondly, the plane passing through z-axis at point 2 and the first one.

Thirdly, the plane passing through x-axis at point -2 and the second one. Fourthly, the plane passing through y-

axis at point 2 and the third one. Fifthly, the plane passing through y-axis at point -2 and the fourth one.

These five intersections give a parallelepiped shape as shown in (Fig. 1). The function code fd10

determines the difference between the parallelepiped distance function and the sphere distance function. The

function code dsphere is given in [7] and it is assumed here that the coordinates of central position are xc=0,

yc=0, and zc=0, with the radius of sphere equals to 1.75.

function d=fd10(p)

x=p(:,1);

y=p(:,2);
z=p(:,3);

d1=x-2;

d2=-x-2;

d3=y-2;

d4=-y-2;

d5=z-2;

d6=-z-2;

d=dintersect(dintersect(dintersect(dintersect(dintersect(d1,d6),d5),d2),d3),d4);

d=ddiff(d,dsphere(p,0,0,0,1.75));

end

III. Methodology
The geometry used is relatively simple because it shows how basic shapes are created and meshed. In

this way, we can create more complex shapes. The methodology is based on the work of Lang [3] and Persson

[7] where the initial grid is generated by the ndgrid Matlab command. This latter generate arrays by

transforming the domain specified as bbox. The simulation data are presented in (Tab. 1), (Tab. 2.) and (Tab.

3.). The Delaunay tesselation is assumed by the delaunayn Matlab command, which computes a set of simplexes

such as any p-data points, where p design positions, are contained in circumspheres of the simplexes (Tab. 7).

The set of simplexes forms the Delaunay tessellation. p is an m-by-3 array representing m points (positions) in

3-dimensional space. t is a number of simplexes-by-(3+1) array where each row contains the indices into p of

the vertices of the corresponding simplexes (Tab. 8).

IV. Results and Discussions

A. Parallelepiped With Spherical Cavity Mesh
The function used has the following form

[p,t]=x3ddiffparallelepiped(@fd10,@fh10,0.25,[-2,-2,-2 ;2,2,2],[2,-2,-2 ;2,2,-2 ;-2,2,-2 ;-2,-2,-2 ;2,-2,2 ;2,2,2 ;-

2,2,2 ;-2,-2,2 ;1,1,1 ;-1,-1,1 ;-2,-2,-2]); where the initial length edge is equal to 0.25 with 12 fixed positions

(nodes). The bbox computational domain [xmin, ymin, zmin ; xmax, ymax, zmax] is taken as [-2,-2,-2 ;2,2,2].

Indeed, this function integrates our fd10-functions and fh10-function elaborated by Persson [7]. Thus, the result

related to a parallelepiped with a spherical cavity is presented in (Fig. 1).

Three-dimensional mesh generation using Delaunay triangulation

www.iosrjournals.org 69 | Page

Mesh

Inputs Definitions and features

Shape Parallelepiped with spherical cavity (hole)

Boundaries

xmin, xmax, ymin, ymax, zmin, zmax

-2 2 -2 2 -2 2

Computational domain bbox

xmin,ymin,zmin ; xmax,ymax,zmax

-2 2 -2 2 -2 2

xc, yc, zc, r 0 0 0 1.75

Initial length edge 0.25

 Fixed nodes X

Y

Z

2

-2

-2

2

2

-2

-2

2

-2

-2

-2

-2

2

-2

2

2

2

2

-2

2

2

-2

-2

2

1

1

1

2

2

2

-1

-1

1

-2

-2

-2

Tab. 1. The simulation data for the parallelepiped with spherical cavity.

The result is based on two secondary results, namely a parallelepiped shape and a spherical shape (Fig.

2) and (Fig. 3) which we will detailed in the next subsections. Otherwise, the mesh obtained for the shape (Fig.

1) contains 15236 simplexes and 3567 nodes (Tab. 2) which is obtained after 105 iterations. The three-

dimensional simplexes used are 3D-tetrahedra. The initial edge length is equal to 0.25 (Tab. 1).

Fig. 1. Parallelepiped mesh with a spherical cavity shape.

The data structure obtained is in good agreement with finite element analysis [10]. The easily

manipulation and the usefulness obtained data are the mainly result. Thus, it could be implemented in other

software devoted to solve more physical problems.

Outputs Definitions and features

Number of iterations 105

Number of nodes 3567

Tetrahedron simplexes number 15236

Tab. 2. Outputs of the parallelepiped with spherical cavity simulation.

B. Parallelepiped Mesh

For the parallelepiped mesh generation, a three-dimensional domain bbox=[-2,-2,-2 ;2,2,2] is used
where the initial length edge equals to 0.9 with the same 12 fixed nodes as below (Tab. 3).

Three-dimensional mesh generation using Delaunay triangulation

www.iosrjournals.org 70 | Page

Mesh

Inputs Definitions and features

Shape Parallelepiped

Boundaries

xmin, xmax, ymin, ymax, zmin, zmax

-2 2 -2 2 -2 2

Computational domain bbox

xmin,ymin,zmin ; xmax,ymax,zmax

-2 -2 -2 2 2 2

Initial length edge 0.9

 Fixed nodes

X

Y

Z

2

-2

-2

2

2

-2

-2

2

-2

-2

-2

-2

2

-2

2

2

2

2

-2

2

2

-2

-2

2

1

1

1

2

2

2

-1

-1

1

-2

-2

-2

Tab. 3. The simulation data for the parallelepiped.

The mesh generation simulation is obtained after 32 iterations. The nodes number is 136, which is equivalent to

the positions number, and we have 421 simplexes as shown in the following (Tab. 4).

Outputs Definitions and features

Number of iterations 32

Number of nodes 136

Tetrahedron simplexes number 421

Tab. 4. Outputs of the parallelepiped simulation.

The mesh obtained is given in (Fig. 2). This result is relatively uniform despite of the use of huniform found by

Persson [7].

Fig. 2. Parallelepiped mesh shape.

C. Spherical Mesh

For the parallelepiped mesh generation, a three-dimensional domain bbox=[-1,-1,-1 ;1,1,1] is used where the

initial length edge is equal to 0.25 without any fixed nodes (Tab. 5).

Three-dimensional mesh generation using Delaunay triangulation

www.iosrjournals.org 71 | Page

Mesh

Inputs Definitions and features

Shape Sphere

Boundaries

xmin, xmax, ymin, ymax, zmin, zmax

-1 1 -1 1 -1 1

Computational domain bbox

xmin,ymin,zmin ; xmax,ymax,zmax

-1 -1 -1 1 1 1

xc, yc, zc, r 0 0 0 1 - -

Initial length edge 0.25

Tab. 5. The simulation data for the sphere.

The mesh generation simulation is obtained after 63 iterations. The nodes number is 257, which is equivalent to

the positions number, and we have 1070 simplexes as shown in the following table (Tab. 6),

Outputs Definitions and features

Number of iterations 63

Number of nodes 257

Tetrahedron simplexes number 1070

Tab. 6. Outputs for the sphere simulation.

The mesh obtained is given in the following where this result exhibits a good uniformity (Fig. 3).

Fig. 3. Spherical mesh shape.

P positions (coordinates)

x y z x y z
2

2

-2

-2

2

2

-2

-2

1,01036297196570

1,01036297196570

…

-2

2

2

-2

-2

2

2

-2

1,01036297196570

-1,01036297089585

…

-2

-2

-2

-2

2

2

2

2

1,01036297196570

-

1,01036297089585

…

… from 1st

position to

position

3567 …

…

-0,112954710440458

0,144553927627283

0,371665814462710

0,576635291365136

0,832875071008775

1,08504943688351

1,34546139599652

1,55927213927976

1,79650731437846

2

…

2

2,00931137294874

2

2

2,01229339406564

2,01140773837162

2

2,00955097084731

2

2

…

2,01059228892260

2

2,00956309429855

2,00926876269988

2

2

2,00852791430579

2

2,01075774373259

2

Tab. 7. Example of data structures concerning positions of the parellelepiped with spherical cavity mesh shape.

Three-dimensional mesh generation using Delaunay triangulation

www.iosrjournals.org 72 | Page

t simplexes (the tetrahedra vertices)

P1 P2 P3 P4 P1 P2 P3 P4

572

572

1971

1971

318

318

571

571

571

1816

…

238

282

1826

1826

4

29

572

588

588

1817

…

282

588

1817

1827

302

302

588

572

282

1826

…

2

299

1970

1817

301

4

823

282

299

1970

…

…from simplexe 1 to

simplexe 15236 …

…

2022

2022

2022

2022

1078

1078

1078

1078

1078

1078

…

2021

1895

1895

2039

1269

1077

1269

1095

1287

1077

…

2039

1877

1878

1895

1270

1269

1287

1077

1095

1095

…

2038

2038

1877

2038

1287

1094

1094

1094

1094

858

Tab. 8. Example of data structures concerning the tetrahedra vertices of the parellelepiped with spherical cavity

mesh shape.

Engineers can focus on solving problems with high accuracy [3]. This can present a gain of effort and a

converging solution to be applicable for optimizing funds, time, materials and gives to wide public better

products with minimal cost.

V. Conclusion
The simulation of a parallelepiped with spherical cavity has achieved the three-dimensional mesh.

Results analysis demonstrated that the tetrahedral elements give a better uniformity in the case of spherical

shapes. Thus, the results obtained in this paper allow us to suggest that our technical method for meshing could

be applied to any form. Consequently, several engineering areas could benefit from our results to mesh the

forms, such as, finite elements analysis, mechanics, electromagnetism, diffusion, fluid dynamics, chemistry and

so on.

Acknowledgements
One of us (E. E.) wants to thank Dr. A. Salhoumi, Master Y. Safi, Pr. M. Madiafi and Dr. F. El

Kennassi for their pertinent remarks and carefully reading of the manuscript.

References
[1] P. L. George, Automatic mesh generation and finite element computation, in: P. G. Ciarlet and J. L. Lions (Eds.), Handbook of

Numerical Analysis, Vol. IV, Elsevier Science B.V., 1996.

[2] T. J. Baker, Automatic Mesh Generation for Complex Three-Dimensional Regions Using a Constrained Delaunay Triangulation,

Engineering with Computers, vol 5, 1989, 161-175.

[3] P. Laug, Contribution à la génération automatique de maillage de qualité pour la simulation numérique, habilitation Université

Pierre et Marie Curie, mars 2006.

[4] A. V. Aho, J. E. Hopcroft, J. Ullman, Data Structures and Algorithms, Addison-Wesley, Reading, MA, 1983.

[5] P. L. George, Mailleur bidimensionnel du club Modulef, INRIA, 1985.

[6] P. L. George, , Construction et modification de maillage, INRIA, 1988.

[7] P. O. Persson, G. Strang, A simple mesh generator in MATLAB, Soc Individual App Math, SIAM, Rev 46, 2004.

[8] Cgal, Computational Geometry Algorithms Library. http://www.cgal.org.

[9] F. Hecht, Outils et algorithms pour la methode des éléments finis, Université Pierre et Marie Curie, juin 1992.

[10] F. Gustrau, D. Manteuffel, EM Modeling of antennas and RF components for wireless communication systems, Berlin, Germany:

Springer-Verlag, 2006.

[11] H. Edelsbrunner, Geometry and Topology for Mesh Generation, Cambridge University Press, Cambridge, United Kingdom, 2001.

http://www.cgal.org/

