
IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE)  

e-ISSN: 2278-1684,p-ISSN: 2320-334X, Volume 12, Issue 4 Ver. I (Jul. - Aug. 2015), PP 17-28 
www.iosrjournals.org 

DOI: 10.9790/1684-12411728                                      www.iosrjournals.org                                            17 | Page 

 

Impact of changing the position of the tool point on the moving 

platform on the dynamic performance of a 3RRR  

planar parallel manipulator 
 

Roshdy Foaad Abo-Shanab 
Department of Mechanical Engineering, Faculty of Engineering / Kafrelsheikh University, Egypt. 

 

 Abstract: In this paper, the impact of changing the location of the tool point, on the moving platform, on the 

dynamics of a planar parallel manipulator is investigated. Lagrange-d’Alembert formulation is used to develop 

the dynamic model of the present manipulator. To evaluate the dynamic performance of the parallel 

manipulator, the input efforts and energy consumptions are calculated for the manipulator when the end-

effector is positioned at different locations on the moving platform and executing given desired trajectories. The 

manipulator’s dimensions and parameters are kept the same during the optimization process and only the 

position of the tool-point on the moving platform is changed. The dynamic performance of the manipulator is 

then evaluated and optimized. It is shown that locating the end-effector of the manipulator at an optimum 
position reduces the generalized forces required to drive the manipulator. It also reduces the energy 

consumption of the manipulator.  

Keywords - Dynamics, energy consumption, Lagrange-d’Alembert, optimization, parallel manipulators, 

trajectory. 

 

I. Introduction 
In recent years, many studies have focused on parallel manipulators. Since their end-effector, moving 

platform, is sustained by several kinematic chains, parallel manipulators can achieve better structural and 
dynamic properties with less structural mass. Some of the advantages offered by parallel manipulators, when 

properly designed, include a high load-to-weight ratio, high stiffness, and positioning accuracy. However, 

parallel manipulators are difficult to design, since the relationships between design parameters and the 

workspace, and behavior of the manipulator throughout the workspace, are not intuitive by any means [1]. In 

addition, the performances of parallel manipulators are very sensitive to their dimensioning. Therefore, a 

thorough analysis of the kinematic and dynamic behavior of the parallel manipulators should be developed for 

optimal design of these machines [2]. Parallel manipulators also are more energy efficient than serial 

manipulators. Li and Gary [3] showed that over a range of conditions, the average energy usage of the parallel 

manipulator was determined to be 26% of the serial manipulator’s. In this respect, Pellicciari et al. [4] showed a 

slight improve in the energy consumption on favor of parallel manipulators in pick and place industrial robots 

application. 
In a previous article [5], the author studied the kinematic behavior of a 3RRR planar manipulator as the 

location of the tool point, on the moving platform, changes. It was shown that changing the location of the end-

effector on the moving platform greatly affects the kinematics of a parallel manipulator as the area of the 

workspace changes as well as other performance indices such as the global conditioning index. It was 

recommended that the location of the end-effector on the moving platform should be considered while 

optimizing the performance of a parallel manipulator. The dynamic performance of the parallel manipulator has 

not been studied in the article.  

Dynamical analysis of parallel manipulators is complicated by the existence of the multiple closed-loop 

chains. Several approaches have been proposed including the Newton-Euler formulation [6-8], the Lagrangian 

formulation [9-12], and the Lagrange-D’Alembert formulation [13-16]. For the Newton-Euler formulation, one 

first carries out a detailed force and torque analysis of each rigid link with some physical knowledge such as 
Newton’s third law, and then apply Newton’s second law and Euler’s equation to each of the rigid links to 

obtain a set of second order ordinary differential equations in the position and angular representation of each 

rigid link. Finally together with the kinematic constraints, the set of equations can be simplified or solved, till 

the desired form of dynamics equation is obtained. The Lagrangian approach is a more efficient than Newton-

Euler method as it eliminates the unwanted reaction forces and moments at the outset.  However, because of the 

numerous constraints imposed by the closed loops of parallel manipulator, deriving explicit equations of motion 

in terms of a set of independent generalized coordinates becomes a prohibitive task. Therefore, the Lagrangian 

equations are written in terms of a set of redundant coordinates. The formulation then requires a set of constraint 

equations derived from the kinematics of the manipulator. Final equations of motion are derived and arranged in 
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two sets. One contains Lagrange multipliers as the only unknown, and the other contains the generalized forces 

contributed by the actuator as the traditional unknowns [17]. Lagrange-d’Alembert formulation allows deriving 

the equations of motion without explicitly solving for the instantaneous constraint forces present in the system. 
This proceeds by projecting the motion of the system into the feasible directions and ignoring the forces of 

constraints directions. By doing so, a more concise description of the dynamics can be obtained [18].  

Yiu et al. [19] reviewed various methods used in deriving the dynamic equations for parallel 

manipulators. They proposed to cut the links instead of cutting joints to obtain the tree system, so that all the 

joints torques, including joint friction, can be incorporated in the dynamic equations. 

Khan et al. [20] developed a modular and recursive formulation for the inverse dynamics of parallel 

architectures based on the concept of decoupled natural orthogonal complement. They applied the developed 

method to derive the dynamic equations of a 3RRR planar parallel manipulator. They cut the moving platform 

into three parts to form three open chains, to be able to apply torques at the joints, and to include the joint 

friction. 

Wu et al. [21] investigated and compared the dynamics of the planar 3-DOF 4-RRR, 3-RRR and 2-
RRR parallel manipulators. The 2-RRR parallel manipulator has only two limbs and one of these limbs has two 

active (actuated) joints whereas the 4-RRR planar manipulator has a redundant actuator. They showed that the 

sum of the absolute values of driving torques of the 2-RRR manipulator has the largest range. They concluded 

that the 2-RRR parallel manipulator has the worst dynamic performance among the three planar 3-DOF parallel 

mechanisms and, in some regions of the workspace, the dynamic performance of the 4-RRR manipulator is 

better than that of the 3-RRR one. 

Ruiz et al. [22] studied the impact of kinematic and actuation redundancy on the energy efficiency of 

planar parallel kinematic machines. They concluded that optimal energy efficient trajectories are dependent on 

the manipulator architecture and redundant parallel manipulators are more energy efficient than non-redundant 

manipulators. 

Generally, it is considered that, given a desired trajectory, the robot that has the lowest input efforts and 

lowest energy consumption along the trajectory has the best performance. 
The objective of this text is to show the effects of changing the location of the tool point, on the 

moving platform, on the dynamics and energy efficiency of planar parallel manipulators. To the best of the 

author’s knowledge, none of the previous work has discussed this problem. 

The manipulator geometry is presented in Section 2. In Section 3, the dynamic model of the studied 

manipulator is developed using Lagrange-d’Alembert formulation. Two case studies are used to evaluate the 

dynamic performance and energy consumption of the manipulator and discussion of the simulation results are 

presented in Section 4. In Section 5, conclusions are described.  

 

II. Manipulator Geometry 
The manipulator considered in this work is a 3RRR planar parallel mechanism. A schematic diagram of 

the manipulator is shown in Figure 1. The manipulator consists of a moving equilateral triangular platform of 

length ℎ connected to a fixed equilateral triangular base of length 𝑑 by three limbs. Each limb consists of two 

links; the first link is connected to the ground by means of a revolute joint identified by the letter Bi and is 

actuated by a rotary actuator. The three actuators, one for each limb, control the three degrees of freedom of the 

moving platform (x, y, and φ). Two coordinate systems are defined to describe the motion of the moving 

platform. The first coordinate system is 

attached to the fixed base (with origin O and 

axes x and y) and is called the reference frame 

while the second coordinate system is attached 
to the moving frame (with origin O' and axes x' 

and y').  

In the present work, we change the 

location of the manipulator end-effector, the 

position of O' in Figure 2, within the area of 

the moving triangle C1 C2 C3 to find the 

optimal position with respect to the dynamic 

performance of the manipulator. The pose of 

the end-effector is expressed relative to the 

reference frame by the position vector  𝑍 =
 𝑥 𝑦 𝜑 . The input angles 𝛩 = [𝜃1  𝜃2  𝜃3] is 
represented by the angular positions of the 

revolute actuators measured from the x-axis of 

the reference coordinate system. The inverse 

Fig. 1. A 3-RRR parallel manipulator 
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kinematics and Jacobian analysis of the manipulator were 

presented by the author in a previous article [16] and are 

presented in the appendices for the convenience of the reader. 
 

III. Dynamic Analysis 
A parallel manipulator can be considered as a 

mechanical system with configuration 𝑞 ∈  𝑅𝑛  subject to a set of 

holonomic constrains, for the present manipulator, 𝑞 =
[𝜃1𝜃2𝜃3  𝑥 𝑦 𝜑] 𝑇. A constraint is said to holonomic if it restricts 
the motion of the system to a smooth hypersurface in the, 

unconstrained, configuration space 𝑄 [18].  Holonomic 

constraints can be represented locally as algebraic constraints on 
the configuration space,  

ℎ𝑖 𝑞 = 0,       𝑖 = 1, . . , 𝑘                  (1) 

 

where 𝑘 is the number of linearly independent constraints. Each 

ℎ𝑖  is a mapping from the configuration space 𝑄 to ℝ restricts the 

motion of the system. Let 𝐿(𝑞, 𝑞 ) represents the Lagrangian for the unconstrained system. We assume that the 

constraints are everywhere smooth and linearly independent and that the forces of constraint do no work on the 

system. The equations of motion are formed by considering the constraint forces as an additional force which 

affects the motion of the system. Hence, the dynamics can be written in vector form as  
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞 
−

𝜕𝐿

𝜕𝑞
= 𝐴𝑇𝜆 + 𝜏             (2) 

where 𝐴 =
𝜕ℎ

𝜕𝑞
=

 
 
 
 
𝜕ℎ1

𝜕𝑞1
⋯

𝜕ℎ1

𝜕𝑞𝑛

⋮ ⋱ ⋮
𝜕ℎ𝑘

𝜕𝑞𝑛
⋯

𝜕ℎ𝑘

𝜕𝑞𝑛  
 
 
 

            (3)  

 

The columns of 𝐴𝑇  form non-normalized bases for the constraint forces and 𝜆 ∈ ℝ𝑘  are called 

Lagrange multipliers and gives the relative magnitude of the forces of constraints. 𝜏 represents nonconservative 

and externally applied forces.  

At a given configuration 𝑞 ∈ 𝑅𝑛 , the instantaneous set of directions in which the system is allowed to 

move is given by the null space of the constraint matrix, 𝐴(𝑞). Let the vector 𝛿𝑞 ∈ 𝑅𝑛 , which satisfies 𝐴(𝑞) ∙
𝛿𝑞 = 0, a virtual displacement. Then 𝛿𝑊 = 𝜏 ∙ 𝛿𝑞 is called the virtual work due to a force 𝜏 acting along a 

virtual displacement δq. D’Alembert’s principle states that the forces of constraint do no virtual work. Hence, 

 𝐴𝑇(𝑞)𝜆 ∙ 𝛿𝑞 = 0     (4) 

To eliminate the constraint forces from Equation (2), the equations of motion is projected onto the linear 

subspace generated by the null space of 𝐴(𝑞). 

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞 
−

𝜕𝐿

𝜕𝑞
− 𝜏 ∙ 𝛿𝑞 = 0                (5)  

where 𝛿𝑞 ∈ 𝑅𝑛  satisfies the constraints  

𝐴(𝑞) ∙ 𝛿𝑞 = 0 

Rearrange the matrix 𝐴(𝑞) to take the following form 

𝐴 𝑞 =  𝐴𝛩 𝑞  𝐴𝑧 𝑞   

where 𝐴𝛩 𝑞 =
𝜕ℎ

𝜕𝛩
  ,  𝐴𝑧 𝑞 =

𝜕ℎ

𝜕𝑍
 ,  𝛩 = [𝜃1𝜃2𝜃3] 𝑇, and  𝑍 = [𝑥 𝑦 𝜑] 𝑇 . 

 

Let 𝜏 =  𝜏𝛩;  𝐹  where 𝜏𝛩 =  𝜏1; 𝜏2; 𝜏3  is a column vector of the actuating torques and 𝐹 =  𝐹𝑥 ; 𝐹𝑦 ; 𝜏𝜑   is a 

column vector of the external forces and torques. Then, Equation (5) can be written as follows: 

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞 
−

𝜕𝐿

𝜕𝑞
− 𝜏 ∙ 𝛿𝑞 =  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛩 
−

𝜕𝐿

𝜕𝛩
− 𝜏𝛩

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑍 
−

𝜕𝐿

𝜕𝑍
− 𝐹

 ∙  
𝛿𝛩

 
𝛿𝑍

 = 0  

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛩 
−

𝜕𝐿

𝜕𝛩
− 𝜏𝛩 ∙ 𝛿𝛩 +  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑍 
−

𝜕𝐿

𝜕𝑍
− 𝐹 ∙ 𝛿𝑍 = 0  

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛩 
−

𝜕𝐿

𝜕𝛩
− 𝜏𝛩 ∙ 𝛿𝛩 +  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑍 
−

𝜕𝐿

𝜕𝑍
− 𝐹 ∙  − 𝐴𝑍(𝑞) −1𝐴𝛩(𝑞)𝛿𝛩 = 0  
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Since 𝛿𝛩 is free, then 

 
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛩 
−

𝜕𝐿

𝜕𝛩
− 𝜏𝛩 +  − 𝐴𝛩(𝑞) 𝑇 𝐴𝑍(𝑞) −𝑇  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑍 
−

𝜕𝐿

𝜕𝑍
− 𝐹 = 0  

Then the actuator torques can be written as follows: 

𝜏𝛩 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛩 
−

𝜕𝐿

𝜕𝛩
+  − 𝐴𝛩(𝑞) 𝑇 𝐴𝑍(𝑞) −𝑇  

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑍 
−

𝜕𝐿

𝜕𝑍
− 𝐹         (6)  

Equation (6) represents the dynamic model of a general parallel manipulator that is subject to holonomic 

constraints and calculates directly the actuator torques without explicitly calculating the Lagrange multipliers.  

For the present manipulator, different terms of Equation (6) can be determined as follows. First, the constraint 

equations of the manipulator, see Figure 1, can be written as: 

ℎ𝑖 =  𝑥 − 𝑥𝐵𝑖 − 𝑎 cos 𝜃𝑖 − 𝑙𝑖 cos  𝛼𝑖 + 𝜑  2 +  𝑦 − 𝑦𝐵𝑖 − 𝑎 sin 𝜃𝑖 − 𝑙𝑖 sin 𝛼𝑖 + 𝜑  2 − 𝑏2 = 0    (7) 
Then,  

𝐴𝜃 𝑞 =  
ℎ11 0 0
0 ℎ22 0
0 0 ℎ33

            (8) 

and 

𝐴𝑍 𝑞 =  

ℎ1𝑥 ℎ1𝑦 ℎ1𝜑

ℎ2𝑥 ℎ2𝑦 ℎ2𝜑

ℎ3𝑥 ℎ3𝑦 ℎ3𝜑

            (9) 

where 

 ℎ𝑖𝑗 =
𝜕ℎ𝑖

𝜕𝜃𝑗
= 0   for  𝑖 ≠ 𝑗 

 ℎ𝑖𝑖 =
𝜕ℎ𝑖

𝜕𝜃𝑖
= 2𝑎   𝑥 − 𝑥𝐵𝑖 sin 𝜃𝑖 −  𝑦 − 𝑦𝐵𝑖   cos𝜃𝑖 + 𝑙𝑖 sin 𝛼𝑖 + 𝜑 − 𝜃𝑖     

ℎ𝑖𝑥 =
𝜕ℎ𝑖

𝜕𝑥
= 2 𝑥 − 𝑥𝐵𝑖 − 𝑎 cos𝜃𝑖 − 𝑙𝑖 cos(𝛼𝑖 + 𝜑)      

ℎ𝑖𝑦 =
𝜕ℎ𝑖

𝜕𝑦
= 2 𝑦 − 𝑦𝐵𝑖 − 𝑎 sin 𝜃𝑖 − 𝑙𝑖 sin(𝛼𝑖 + 𝜑)       

ℎ𝑖𝜑 =
𝜕ℎ𝑖

𝜕𝜑
= 2 𝑙𝑖    𝑥 − 𝑥𝐵𝑖  sin(𝛼𝑖 + 𝜑) −  𝑦 − 𝑦𝐵𝑖  cos(𝛼𝑖 + 𝜑) − 𝑎 sin 𝛼𝑖 + 𝜑 − 𝜃𝑖    

Since  𝐴(𝑞) ∙ 𝛿𝑞 = 0, then 

𝜃 = − 𝐴𝜃 𝑞  
−1𝐴𝑧 𝑞  𝑧            (10) 

Let  𝐴𝜃𝑧  𝑞 = − 𝐴𝛩(𝑞) −1𝐴𝑍(𝑞) 

𝐴𝜃𝑧  𝑞 = − 
ℎ11 0 0
0 ℎ22 0
0 0 ℎ33

 

−1

 

ℎ1𝑥 ℎ1𝑦 ℎ1𝜑

ℎ2𝑥 ℎ2𝑦 ℎ2𝜑

ℎ3𝑥 ℎ3𝑦 ℎ3𝜑

  

𝐴𝜃𝑧  𝑞 = −

 
 
 
 
 
ℎ1𝑥

ℎ11

ℎ1𝑦

ℎ11

ℎ1𝜑

ℎ11

ℎ2𝑥

ℎ22

ℎ2𝑦

ℎ22

ℎ2𝜑

ℎ22

ℎ3𝑥

ℎ33

ℎ3𝑦

ℎ33

ℎ3𝜑

ℎ33  
 
 
 
 

         (11) 

Let  𝐴 𝜃𝑧 (𝑞) =
𝑑

𝑑𝑡
 𝐴𝜃𝑧 (𝑞) , the elements of 𝐴 𝜃𝑧 (𝑞) can be calculated as follows: 

𝑑

𝑑𝑡
 
ℎ𝑖𝑥

ℎ𝑖𝑖

 =
ℎ 𝑖𝑥ℎ𝑖𝑖 − ℎ𝑖𝑥ℎ 𝑖𝑖

ℎ𝑖𝑖
2  

𝑑

𝑑𝑡
 
ℎ𝑖𝑦

ℎ𝑖𝑖

 =
ℎ 𝑖𝑦ℎ𝑖𝑖 − ℎ𝑖𝑦ℎ 𝑖𝑖

ℎ𝑖𝑖
2  

𝑑

𝑑𝑡
 
ℎ𝑖𝜑

ℎ𝑖𝑖

 =
ℎ 𝑖𝜑ℎ𝑖𝑖 − ℎ𝑖𝜑ℎ 𝑖𝑖

ℎ𝑖𝑖
2  
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where 

ℎ 𝑖𝑥 = 𝑥 + 𝑎 sin𝜃𝑖 𝜃 𝑖 + 𝑙𝑖 sin(𝛼𝑖 + 𝜑)𝜑  

ℎ 𝑖𝑦 = 𝑦 − 𝑎 cos 𝜃𝑖 𝜃 𝑖 − 𝑙𝑖 cos(𝛼𝑖 + 𝜑)𝜑  

ℎ 𝑖𝜑 =  𝑙𝑖   𝑥  sin(𝛼𝑖 + 𝜑) +  𝑥 − 𝑥𝐵𝑖  cos(𝛼𝑖 + 𝜑)𝜑 − 𝑦  cos(𝛼𝑖 + 𝜑) +  𝑦 − 𝑦𝐵𝑖  sin(𝛼𝑖 + 𝜑)𝜑 

− 𝑎 cos 𝛼𝑖 + 𝜑 − 𝜃𝑖  𝜑 − 𝜃 𝑖   

ℎ 𝑖𝑖 = 𝑎  𝑥 − 𝑥𝐵𝑖 cos𝜃𝑖 𝜃 𝑖 + 𝑥 sin 𝜃𝑖 +  𝑦 − 𝑦𝐵𝑖  sin 𝜃𝑖 𝜃 𝑖 − 𝑦  cos𝜃𝑖 + 𝑙𝑖 cos 𝛼𝑖 + 𝜑 − 𝜃𝑖  𝜑 − 𝜃 𝑖   
 

If the motion of the tool-point of the parallel kinematic machine is defined in the Cartesian coordinates, the time 

derivatives of the joint variables can be calculated as follows. 

𝜃 = 𝐴𝜃𝑧 (𝑞)𝑍             (12) 

𝜃 = 𝐴𝜃𝑧 (𝑞)𝑍 + 𝐴 𝜃𝑧 (𝑞)𝑍           (13) 
 

Next, the Lagrangian function of the manipulator is calculated. The manipulator is planar moves in a 

horizontal plane, therefore, potential energy is zero and the Lagrangian function is simply equals to the total 

kinetic energy of the manipulator. The kinetic energy of the manipulator can be divided into three parts; the 

kinetic energy of the first link in each limb, the second link in each limb, and the moving platform. First, the 

kinetic energy, 𝐾𝑎𝑖
, of the first link in each limb (Link Bi Ai), note that the limbs are identical : 

𝐾𝑎𝑖
=

1

2
𝑚𝑎𝑣𝑎𝑖

2 +
1

2
𝐼𝑎𝜃 𝑖

2            (14)  

 

𝑣𝑎𝑖
=

1

2
𝑎 𝜃 𝑖 is the velocity of the center of mass of link Bi Ai,  𝑚𝑎  is the mass of link Bi Ai, 𝐼𝑎 =

1

12
𝑚𝑎𝑎

2 is the 

mass moment of inertia of link Bi Ai about an axis passing through its center of mass and parallel to z-axis, and 𝑎 

is the length of link Bi Ai. Then 

𝐾𝑎𝑖
=

1

6
𝑚𝑎𝑎

2𝜃𝑖
2                          (15)   

 

The kinetic energy of the second link, 𝐾𝑏𝑖
, in each limb (Link Ai  Ci): 

𝐾𝑏𝑖
=

1

2
𝑚𝑏𝑣𝑏𝑖

2 +
1

2
𝐼𝑏 𝜃 𝑖 + 𝜓 

𝑖 
2
                      (16)   

 

where 𝑣𝑏𝑖  is the velocity of the center of mass of link Ai Ci,  𝑚𝑏  is the mass of link Ai Ci, and 𝐼𝑏 =
1

12
𝑚𝑏𝑏

2 is the 

mass moment of inertia of link Ai Ci about an axis passing through its center of mass and parallel to z-axis. The 

kinetic energy of the second link of each limb is derived as a function of 𝑥, 𝑦, 𝜑, 𝜃1 , 𝜃2, and 𝜃3 and their time 

derivatives and 𝜓1 , 𝜓2 , 𝜓3  and their time derivatives are eliminated. 

𝐾𝑏𝑖
=

1

6
𝑚𝑏 𝑥 

2 + 𝑦 2 + 𝑎2𝜃 𝑖
2 + 𝑙𝑖

2𝜑 𝑖
2 − 𝜃 𝑖 𝑥 sin𝜃𝑖 − 𝑦 cos𝜃𝑖 +   

                     2𝑙𝑖𝜑  𝑥 sin 𝛼𝑖 + 𝜑 − 𝑦 cos 𝛼𝑖 + 𝜑  − 2𝑎𝑙𝑖𝜑 𝜃 𝑖 cos 𝛼𝑖 + 𝜑 − 𝜃𝑖      (17) 

 

Finally, the kinetic energy of the moving plate 𝐾𝑝 : 

𝐾𝑝 =
1

2
𝑚𝑝𝑣𝑝

2 +
1

2
𝐼𝑝𝜑 

2        

 

where 𝑣𝑝  is the velocity of the origin of the moving coordinate system that attached to the moving plate and 𝐼𝑝  is 

the mass moment of inertia of the moving platform.  

From (15), (16) and (17), the total kinetic energy of the manipulator is 

𝐿 =
1

2
 𝑚𝑏 + 𝑚𝑝 𝑥 

2 +
1

2
 𝑚𝑏 + 𝑚𝑝 𝑦 

2 +
1

2
 

1

3
 𝑙1

2 + 𝑙2
2 + 𝑙3

2 𝑚𝑏 + 𝐼𝑝 𝜑 
2 +

1

6
 𝑚𝑎 + 𝑚𝑏  𝑎2  𝜃 𝑖

23
𝑖=1 +

 
1

3
 𝑚𝑏𝜑  𝑙𝑖 sin 𝛼𝑖 + 𝜑 3

𝑖=1 −
1

6
𝑎 𝑚𝑏  sin𝜃𝑖

3
𝑖=1 𝜃 𝑖 𝑥 +

 −
1

3
 𝑚𝑏𝜑  𝑙𝑖cos 𝛼𝑖 + 𝜑 3

𝑖=1 +
1

6
𝑎 𝑚𝑏  cos 𝜃𝑖

3
𝑖=1 𝜃 𝑖 𝑦 −

1

6
𝑎 𝑚𝑏𝜑  𝑙𝑖cos 𝛼𝑖 + 𝜑 − 𝜃𝑖 𝜃 𝑖

3
𝑖=1   (18)  

 

Taking the derivatives of the Lagrangian function (19) with respect to the six generalized coordinates, we get 
𝜕𝐿

𝜕𝑥
= 0,              (19) 

 
𝜕𝐿

𝜕𝑦
= 0,              (20) 

and  
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𝜕𝐿

𝜕𝜑
=

1

3
 𝑚𝑏  𝑙𝑖cos 𝛼𝑖 + 𝜑 3

𝑖=1 𝑥 + 𝑙𝑖sin 𝛼𝑖 + 𝜑 𝑦   𝜑 +
1

6
𝑎 𝑚𝑏𝜑  𝑙𝑖 sin 𝛼𝑖 + 𝜑 − 𝜃𝑖 𝜃 𝑖

3
𝑖=1   (21)  

𝜕𝐿

𝜕𝜃𝑖
= −

1

6
𝑎 𝑚𝑏 𝑥 cos𝜃𝑖 + 𝑦 sin 𝜃𝑖 𝜃 𝑖 −

1

6
𝑎 𝑙𝑖  𝑚𝑏sin 𝛼𝑖 + 𝜑 − 𝜃𝑖 𝜃 𝑖𝜑 ,  𝑖 = 1, 2, and 3.                  (22) 

𝜕𝐿

𝜕𝜑
=

1

3
 𝑚𝑏  𝑙𝑖cos 𝛼𝑖 + 𝜑 3

𝑖=1 𝑥 + 𝑙𝑖sin 𝛼𝑖 + 𝜑 𝑦   𝜑 +
1

6
𝑎 𝑚𝑏𝜑  𝑙𝑖 sin 𝛼𝑖 + 𝜑 − 𝜃𝑖 𝜃 𝑖

3
𝑖=1           (23) 

 
𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑥 
 =  𝑚𝑏 + 𝑚𝑝  𝑥 +

1

3
 𝑚𝑏𝜑  𝑙𝑖sin  𝛼𝑖 + 𝜑 3

𝑖=1 −
1

6
𝑎 𝑚𝑏  sin 𝜃𝑖

3
𝑖=1 𝜃 𝑖 +

1

3
 𝑚𝑏𝜑 

2  𝑙𝑖 cos  𝛼𝑖 + 𝜑 3
𝑖=1 −

1

6
𝑎 𝑚𝑏  cos𝜃𝑖

3
𝑖=1 𝜃 𝑖

2                                                   (24) 

 
𝑑

𝑑𝑡
 
𝜕𝐿

𝜕𝑦 
 =   𝑚𝑏 + 𝑚𝑝 𝑦  −  

1

3
 𝑚𝑏   𝑙𝑖cos   𝛼𝑖 + 𝜑 3

𝑖=1 𝜑 −  𝑙𝑖  sin  𝛼𝑖 + 𝜑 𝜑 23
𝑖=1   +

1

6
𝑎 𝑚𝑏  cos𝜃𝑖

3
𝑖=1 𝜃 𝑖 −

1

6
𝑎 𝑚𝑏  sin 𝜃𝑖 𝜃 𝑖

23
𝑖=1                (25) 

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜑 
 =

 
1

3
 𝑙1

2 + 𝑙2
2 + 𝑙3

2 𝑚𝑏 + 𝐼𝑝 𝜑 +
1

3
 𝑚𝑏  𝑙𝑖sin 𝛼𝑖 + 𝜑 3

𝑖=1 𝑥 − 𝑙𝑖 cos 𝛼𝑖 + 𝜑 𝑦  −
1

6
𝑎 𝑚𝑏  cos 𝛼𝑖 + 𝜑 − 𝜃𝑖 𝜃 𝑖

3
𝑖=1 +

1

3
𝑚𝑏𝜑   𝑙𝑖cos 𝛼𝑖 + 𝜑 3

𝑖=1 𝑥 + 𝑙𝑖 sin 𝛼𝑖 + 𝜑 𝑦  +
1

6
𝑎 𝑚𝑏  sin 𝛼𝑖 + 𝜑 − 𝜃𝑖   𝜑 − 𝜃 𝑖  𝜃 𝑖

3
𝑖=1                       (26) 

𝑑

𝑑𝑡
 

𝜕𝐿

𝜕𝜃 𝑖
 =

1

3
 𝑚𝑎 + 𝑚𝑏  𝑎2𝜃 𝑖 −

1

6
𝑎 𝑚𝑏 𝑥  sin 𝜃𝑖 − 𝑦  cos𝜃𝑖 + 𝑙𝑖 cos(𝛼𝑖 + 𝜑 − 𝜃𝑖)𝜑  −  

                 
1

6
𝑎 𝑚𝑏 𝑥  𝜃 𝑖 cos 𝜃𝑖 + 𝑦  𝜃 𝑖sin𝜃𝑖 − 𝑙𝑖 sin 𝛼𝑖 + 𝜑 − 𝜃𝑖 (𝜑 − 𝜃 𝑖)𝜑   , 𝑖 = 1, 2, and 3.    (27) 

 

Equations (8) to (9) and (19) to (27) are substituted in Equation (6) to obtain the driving torques. 

Meanwhile, the energy consumption of the parallel manipulator can be expressed as follows [9]: 

𝐸 =     𝜏𝑖𝜃𝑖 
3
𝑖=1   𝑑𝑡

𝑡𝑓
𝑡𝑜

             (28) 

where 𝑡𝑜  and  𝑡𝑓 are the start time and end time, respectively of the motion of the manipulator. 

 

IV. Simulation Results 
The developed schemes are applied to the present manipulator, shown in Figure 1. The coordinates of 

the points of connection of the manipulator with the fixed base are: 𝐵1 −300, −173.2  mm, 𝐵2 300,−173.2  
mm and 𝐵3 0, 346.4  mm. The following numerical values are used for the different manipulator dimensions: 

𝑎 = 150 mm,   𝑏 = 337.5 𝑚𝑚, ℎ = 250 mm. The author showed in a previous article [23] that these 

dimensions give the maximum reachable workspace of the manipulator. Inertia moments and masses of different 

links of the manipulator are taken as follows: 𝑚𝑎 = 2 kg, 𝑚𝑏 = 4.5 kg, 𝑚𝑝 = 3 kg, and 𝐼𝑝 = 0.03 kg.m2. The 

external forces, 𝐹 =  𝐹𝑥  𝐹𝑦  𝜏𝜑 , are assumed to be constant during the motion with the following values: 

𝐹𝑥 = 20 N, 𝐹𝑦 = 10 N, and 𝜏𝜑 = 0 N.m.   

 

To evaluate the dynamic performance of the parallel manipulator, the input efforts and energy 

consumed are calculated for the manipulator when the end-effector is positioned at different locations on the 

moving platform and executes given desired trajectories. Figure 3 shows the different locations of the tool point 
on the moving platform, these locations are chosen based on the similarity of the platform (equilateral triangle), 

other locations are expected to give similar results. 

Two trajectories are assigned for the motion of the tool 

point. The first trajectory is a straight-line path the tool point 

moves from the initial location at Z =  40  − 100   π/3 T, 

where 𝑥 and 𝑦 are in millimeters and 𝜑 is in radians, to the 

final position at Z =  −40  − 100   π/3 T with cycloidal 
motion: 

 𝑥 = 𝑥𝑜 − 𝑙 ∗  𝑡/𝑇 − 1/2𝜋 ∗ sin 2𝜋𝑡/𝑇                       (29) 

 

Where 𝑦 and 𝜑 are constants during the path and  𝑙 = 80 

mm, is the total distance traveled by the tool point during 

the task.  
The second trajectory is to move the tool point on a circular 

path of radius 𝑅 = 40 mm and a center at (𝑥𝑜 = −10 𝑚𝑚,
𝑦𝑜 =  −100 𝑚𝑚, ), starts from the initial location at  

𝑍 =  40  − 100   𝜋/3 𝑇. The equations of the motion 
trajectory are: 

1 

2 3 

4 

5 
6 

7 

C1 
C2 

C3 

Fig. 3. Different locations for the tool point on 

the moving platform. 
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𝑍 =  
𝑥𝑜 + 𝑅 cos 2𝜋𝑡/𝑇
𝑦𝑜 + 𝑅 sin 2𝜋𝑡/𝑇

𝜋/3
            (30) 

where 𝑇 = 4 s, is the total motion time in both cases. For the second trajectory, the tool point makes a complete 

circle in 4 seconds.  The orientation of the moving platform is kept constant during the motion at 𝜑 = 𝜋/3 and 

the integration time is chosen to be ∆𝑡 = 1 ms. Figures 4 and 5 show the trajectories of the moving platform 

during the two cases. 

A MATLAB program is developed 
to calculate the actuator torques for both 

trajectories considering the tool point at 

different locations as shown in Fig. 3. The 

program also calculates the energy required to 

execute the manipulator motion. The results 

show that the input efforts are the lowest 

when the tool point is located at Position 1. 

Fig. 5 and Fig. 6 show the required torques to 

drive the manipulator through a straight-line 

path while the tool point is at Position 4 and 

Position 1, respectively. Fig. 7 shows the sum 

of torques when the tool point is located at 
Position 1, 4, and 5. Figs. 9 to 11 show 

similar results when the tool point is moving 

on a circular path. The two sets of results, 

moving on a straight-line path and on a 

circular path, give the same indication about 

the dynamic performance of the manipulator, 

Position 1 give the lowest input effort to drive 

the manipulator through the desired trajectories.  

The optimization toolbox fminimax of 

MATLAB, which applies Quasi-Newton 

algorithm, is used to find the location of the 
tool point on the moving platform that 

optimizes the energy consumption during the 

execution of trajectory in the two cases. For 

both cases, it is found that Position 1gives the 

minimum energy consumption. The results are 

verified using a MATLAB program. The 

energy consumption of the manipulator during 

the execution of the tasks when the tool point is 

positioned at different locations is calculated. 

As seen in Fig. 12, Position 1 gives the lowest 

energy consumption for both trajectories.  
 

 

 

V. Conclusion 
The present work investigates the effects of changing the position of the end-effector, on the moving 

platform, on the dynamic performance of a 3-RRR planar parallel manipulator. The dynamic equations of the 

parallel manipulator were developed using Lagrange d’Alembert method. The dynamic performance of the 

manipulator was then optimized as the location of the tool point on the moving platform changes. All the 

dimensions and parameters of the manipulator are kept the same during the optimization process. To the best of 

the author knowledge, none of the previous research had addressed this problem. It is shown that precisely 
locating the suitable tool point position on the moving platform reduces the input efforts and the energy 

consumption. For the present manipulator, the reductions of the energy consumption were 23.4% and 18.67% 

for the first and second cases, respectively.   
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Fig. 4.  x- Coordinate of the tool point during the first case. 
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Fig. 6. Driving torque for the straight line path, tool point at position 4. 

 
 

Fig. 7. Driving torque for the straight line path, tool point at position 1. 

 
Fig. 8. Sum of the absolute values of the driving torque for the straight line path, tool point at different 

positions. 
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Fig. 9. Driving torque for the circular line path, tool point at position 4. 

 
Fig. 10. Driving torque for the circular line path, tool point at position 1. 

 
Fig. 11. Sum of the absolute values of the driving torque for the circular line path,  

tool point at different positions. 
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Fig. 12. Energy consumption during the straight line path and circular line path, tool point at different positions. 
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Appendix A 

Inverse Kinematics 

From the geometry of the manipulator, shown in Figures 1 and 2, a vector loop equation can be written for each 

limb as 

𝑂𝑂′ = 𝑂𝐵𝑖 + 𝐵𝑖𝐴𝑖 + 𝐴𝑖𝐶𝑖 + 𝐶𝑖𝑂
′ (A1) 

 

where 𝑖 = 1, 2, 3. Expanding (1), we get 

 𝑥 = 𝑥𝐵𝑖 + 𝑎 𝑐𝑜𝑠 𝜃𝑖 + 𝑏 𝑐𝑜𝑠 𝜃𝑖 + 𝜓𝑖 + 𝑙𝑖 𝑐𝑜𝑠   𝛼𝑖 + 𝜑  (A2) 

 𝑦 = 𝑦𝐵𝑖 + 𝑎 𝑠𝑖𝑛 𝜃𝑖 + 𝑏 𝑠𝑖𝑛 𝜃𝑖 + 𝜓𝑖 + 𝑙𝑖 𝑠𝑖𝑛   𝛼𝑖 + 𝜑  (A3) 

 

The definitions of the angles α1, α2, and  α3 are shown in Figure 2. Squaring (A2) and (A3) and summing the 

results, we get 
 𝑏2 =  𝑥 − 𝑥𝐵𝑖 − 𝑎 𝑐𝑜𝑠 𝜃𝑖 − 𝑙 𝑖 𝑐𝑜𝑠   𝛼𝑖 + 𝜑  2 +  𝑦 − 𝑦𝐵𝑖 − 𝑎 𝑠𝑖𝑛 𝜃𝑖 − 𝑙𝑖  𝑠𝑖𝑛  𝛼𝑖 + 𝜑  2. (A4) 

 

Now, expanding (A4) and putting the result in the following form: 

 𝑒𝑖1 𝑠𝑖𝑛 𝜃𝑖 + 𝑒𝑖2 𝑐𝑜𝑠 𝜃𝑖 + 𝑒𝑖3 = 0, (A5) 

 

where 

 𝑒𝑖1 = 2 𝑎 𝜌𝑖 𝑠𝑖𝑛 𝛼𝑖 + 𝜑 + 2 𝑎  𝑦𝐵𝑖 − 𝑦  (A6) 

 𝑒𝑖2 = 2 𝑎 𝜌𝑖 𝑐𝑜𝑠 𝛼𝑖 + 𝜑 + 2 𝑎  𝑥𝐵𝑖 − 𝑥  (A7) 

 𝑒𝑖3 = 𝑥2 + 𝑦2 + 𝑎2 + 𝜌𝑖
2 − 𝑏2 − 2 𝑥 𝑥𝐵𝑖 − 2 𝑦 𝑦𝐵𝑖 + 𝑥𝐵𝑖

2 + 𝑦𝐵𝑖
2 + 2 𝑙𝑖 𝑐𝑜𝑠 𝛼𝑖 + 𝜑  𝑥𝐵𝑖 − 𝑥 +

2 𝑙𝑖  𝑠𝑖𝑛 𝛼𝑖 + 𝜑  𝑦𝐵𝑖 − 𝑦 . 
(A8) 

Substitute the following trigonometric identities in (A5) 

 

    𝑠𝑖𝑛 𝜃𝑖 =
2𝑡𝑖

1+𝑡𝑖
2 , 𝑐𝑜𝑠 𝜃𝑖 =

1−𝑡𝑖
2

1+𝑡𝑖
2 , and 𝑡𝑖 = 𝑡𝑎𝑛

𝜃1

2
 

we obtain 

 
  𝑒𝑖3 − 𝑒𝑖2   𝑡𝑖

2 + 2𝑒𝑖1𝑡𝑖 +  𝑒𝑖3 + 𝑒𝑖2   = 0,  (A9) 

then    

 
𝜃𝑖 = 2 𝑡𝑎𝑛−1

−𝑒𝑖1 ±  𝑒𝑖1
2 + 𝑒𝑖2

2 − 𝑒𝑖3
2

𝑒𝑖3 − 𝑒𝑖2

 (A10) 

 

Three cases could be found when solving (10). The first case when the solution gives two different real 

roots. This means that for each given moving platform location, there are two possible configurations for every 

limb. The second case, when it yields a double root, this means that this limb is in a fully stretched out or folded 

back configuration and is called the singular configuration. The third case, when the solution yields no real 

roots, the specified moving platform location is not reachable, i.e., this location is out of the manipulator  

workspace [17]. 

 

Appendix B 

Jacobian Analysis of the Manipulator 

In this section, the analytical development of the manipulator’s Jacobian matrix is presented. For each limb, 

differentiating (A2) and (A3), we get: 

 𝑥 = −𝑎 sin 𝜃𝑖 𝜃 𝑖 − 𝑏 sin 𝜃𝑖 + 𝜓𝑖  𝜃 𝑖 + 𝜓 
𝑖 − 𝑙𝑖 sin 𝛼𝑖 + 𝜑  𝜑 ,   (A11) 

 𝑦 =   𝑎 cos𝜃𝑖 𝜃 𝑖 + 𝑏 cos 𝜃𝑖 + 𝜓𝑖  𝜃 𝑖 + 𝜓 
𝑖 + 𝑙𝑖 cos 𝛼𝑖 + 𝜑  𝜑 . (A12) 

 

Solving (A11) and (A12) to eliminate 𝜓 
𝑖, we get 

 cos 𝜃𝑖 + 𝜓𝑖 𝑥 + sin 𝜃𝑖 + 𝜓𝑖  𝑦 −  𝑙𝑖 sin  𝜃𝑖 + 𝜓𝑖 −  𝛼𝑖 + 𝜑   𝜑 = 𝑎 sin 𝜓𝑖 𝜃 𝑖. (A13) 

 

Equation (A13) is written in the matrix form as follows: 
 𝑱𝒛𝒁 = 𝑱𝜣𝚯 , (A14) 
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where 𝑱𝒛 =

 
 
 
 
 cos  β

1
sin  β

1
− 𝑙1 sin  β

1
−  𝛼1 + 𝜑   

cos  β
2

sin  β
2

− 𝑙2 sin β
2
−  𝛼2 + 𝜑   

cos  β
3

sin  β
3

− 𝑙3 sin β
3
−  𝛼3 + 𝜑    

 
 
 
 

, 𝛽𝑖 = 𝜃𝑖 + 𝜓𝑖, and  

𝑱𝜣 =  
𝑎 sin 𝜓1 0 0

0 𝑎 sin 𝜓2 0
0 0 𝑎 sin 𝜓3

   

 

In the above expression, 𝑱𝒛 and 𝑱𝜣 are two separate Jacobian matrices, these matrices can be combined to obtain 

a single matrix that establishes the inverse transformation between the input and output velocities: 

 𝜣 = 𝑱 𝒁 , (A15) 

 where  𝑱 = 𝑱𝜣
−1𝑱𝒛 corresponding to the inverse Jacobian of a serial manipulator. 


