Behavior of R.C. Beams with Inclined Cantilever

Ass.Prof.Dr.Aly Abdel Zaher Elsayed¹; Dr. Mohamed Noaman²; Ali Mohamed Abdallah³ Mahmoud Ahmed Ali abdelrahim⁴

¹staff in Civil Engineering Department, Faculty of Engineering, Assiut University, Assiut, Egypt. ²Civil Engineering Department, Faculty of Engineering, ALazhar University, ³Civil Engineering Department, Faculty of Engineering, Kafrelsheikh University, ⁴Civil Engineer, Al-azharUniversity, 2010.

Abstract: In this study, equilibrium configurations of a cantilever beam subjected to an end load with angle of inclination is investigated. It is shown analytically that if the beam is sufficiently flexible, there are multiple equilibrium solutions for a specific beam and loading condition. A method is also presented for the determination of these deflected configurations. The cantilever beam studied in this research is considered to be initially straight and prismatic in addition to being homogeneous, elastic, and isotropic. The procedure outlined in this paper is utilized to show that for each combination of load and beam parameters, there is certain number of equilibrium configurations for a cantilever beam. The ranges of these combinations, along with some examples of the deflected shapes of the beams, are provided for several load inclination angles.

I. Introduction

A cantilever beam is a beam that is only supported on one of its ends. Cantilever construction is popular in many kinds of architectural design and in other kinds of engineering, where professionals use terms like end load, intermediate load, and end moment to identify how much a cantilever beam will hold. The term moment is related to torque and to a theoretical load on a beam.

In residential architecture, cantilever beam design is often used for creating balconies and other extensions above ground level. Famous architects like Frank Lloyd Wright⁽³⁾ were known to take advantage of cantilever beam_construction to provide for parts of a building that protrude from a supported section. The use of cantilever beam setups and similar cantilever engineering is also often seen in bridges and similar projects. Carpenters might think of cantilever beam_design in terms of wooden beams, but in other kinds of projects a cantilever design is applied to a concrete_slab or a metal girder.

A specific use of cantilever beam construction is often part of a temporary construction project. While a bridge or other project is in transition, cantilever design provides for structural integrity while only one side of a beam is supported Later, that beam may be supported on both sides. Engineers can show diagrams of how cantilever design will help ensure stability mid-way through a building project as part of a safety study.

Architects and engineers also use cantilever beam structures for the overhangs that are often a part of various buildings. Airports, university campuses, office complexes, and other areas will often include exterior structures that use cantilever beam construction for different intentions in building_design. These overhanging elements can provide shelter from the elements or a decorative aspect to a building. In some cases, an "open style" cantilever design fits into a modern or artistic design for a space, where planners have blended practicality with aesthetic appeal.

Those who are interested in observing how cantilever design is used in modern engineering can easily find many visible instances of this engineering method at work in their local communities. A detailed study of this kind of design can better prepare a student for entrance into an engineering or architectural program. It can also increase a student's understanding of how professionals implement this kind of design to both residential and commercial projects.

The ultimate load considered as the ultimate capacity of the section to carrying bending or shears which is critical equ. The theoretical values of the cracking shear load (Qcrth) can be determined according to (Egyptian code 2002)⁽¹⁾.

Q th= $0.75\sqrt{f_c/\gamma_c}$	kg/cm ²	(1)
$q_{ush} = 2.2 \sqrt{f_c} / \gamma_c$	kg/cm ²	(2)

The equation is according ACI Code (1995&2002) ⁽²⁾ the theoretical values of the ultimate load (P_{uth}) can be determined according to the smallest value of the following cases (a), or (b) as follows. (a) - Due to bending by (ACI Code 1995&2002) Puth = 2.7 fy (1 - 0.9 fy/105) (3)

(b) Due to shear by (ACI Code 1995&2002)

 $P_{uth} = 1.6 * \sqrt{f'_c} * b * d$ (4) Then the critical theoretical values of the ultimate load (Puth) can be determined due to bending. The theoretical values of the cracking load (Pcrth) can be determined According to (ACI Code 318-1995& 2002) & ACI 363R-92. Where Pcth = 2.5Mcr, Mcr = (fctr .Ig)/yct, fctr =0.94 $\sqrt{f/c}$ Mpa.

I. Experimental Work

Experimental tests have been carried out on rectangular reinforced concrete beams under static loading up to failure. The study takes into consideration the following parameters:

1-Percentage of longitudinal tension reinforcement (ρ)

2- Inclination (α) of cantilever in tested beam

The above mentioned parameters were chosen to declare and to determine their effects on the general behavior of strength reinforced concrete beams under static loading particularly on their shear, flexural and torsion states in the well-known stages of the loading up to failure.

Ten reinforced concrete beams were prepared. They have normal strength of concrete ($f_c = 250$) and with straight cantilever ($\alpha = 0.0^{\circ}$) and inclined cantilevers ($\alpha = 30^{\circ}$, 45° , 60° , 90°) the main steel percentage of tested beam were $A_{s1} = 2\Phi 16$ mm ($\rho = 1.24$) and $A_{s2} = 4\Phi 16$ mm ($\rho = 1.24$) for all beam.

II. Materials

2.1 Concrete

Concrete mixes design was made to produce concrete having 28 days' strengths of about 250kg/cm². The mix proportions by weight are represented in table (1).

For normal strength concrete ($f_c = 250 \text{ kg/cm}^2$), the constituent materials were:

a- Ordinary Portland cement, its properties agree with ECP 203.

- b- Local gravel; the used gravel was 20 mm nominal maximum size, 2.65 specific gravity, and 1.66 t/m 3 volume weight.
- c- Local sand; the used sand is a medium type one which has a specific gravity and volume weight of 2.65 and 1.65 t/m³ respectively. The sieve analysis of the used sand and gravel are given in tables(1)
- d- Potable water was used.

1 able (1), Concrete mix proportion	Table	(1), C	oncrete	mix	pro	portion
--	-------	--------	---------	-----	-----	---------

				Amount of co	onstituent m	aterials/m ³
aamamata	Cement		Gravel.	Water	f _{cu} (kg/cm	1 ²)
concrete	(kg)	Sand (kg)	(kg)	(liter)		
					7days	28days
С	350	650	1350	140	200	286

2.2 Tested beams

Tested beams consisted of ten simply supported concrete beams with cantilever. These beams were arranged in five groups (A, B, C, Dand E) Beams of groups A, B, C, D and E having a variable length resulting the cantilever inclination (α). All beams having an overall depth of 30 cm and 12 cm width. The beam width was deliberately kept constant at 12cm to maintain the same fracture energy for all beam specimens. This is because the surface layer of a beam contains a lower content of large aggregates and a relatively higher content of mortar. Therefore, the crack propagation will occur farther in the surface than in the interior.

Group (A, B, C, D And E)

This group includes ten beams having the same concrete compressive strength (f_{c28}), horizontal web reinforcement ratio (ρ_v) group (A) includes two beams having straight cantilever(α =0.0°) and groups (B,C,D and E) having different inclined cantilever with angle (α) equal to (30°, 45°, 60° and 90°) respectively. All groups (A, B, C, D and E) having pairs of beam with different longitudinal steel ratio (ρ) A_{s1} = 2 Φ 16mm (ρ = 1.24) and A_{s2} = 4 Φ 16mm(ρ = 1.24).

Complete details for all the tested beams are presented in table (2) as well as in Figs. from (1) to (10

Table (2), [Detai	ils of	the te	sted beams	J.					
Corico No.	S	pecir	nen	beams (cm)	cantilevers (cm)	anchorage (cm)	web re	Fc		
Series No.	Νοα		As	Lb	Lc	l _b	ρ	ρν	ρn	Fc (kg / em2)
A	A1 A2	0.0°	2φ16 4φ16	100	50	10	1.24 2.48	0.16	0.35	295
В	B1 B2	30°	2¢16 4¢16	100	54	10	1.24 2.48	0.16	0.35	290
С	C1 C2	4 5°	2¢16 4¢16	100	68	10	1.24 2.48	0.16	0.35	285
D	D1 D2	<mark>60°</mark>	2¢16 4¢16	100	100	10	1.24 2.48	0.16	0.35	275
E	E1 E2	90°	2¢16 4¢16	100	50	10	1.24 2.48	0.16	0.35	285

Where:

 L_b Length of the beam. l_b Length of anchorage length beyond the support. ρ longitudinal main steel ratio. L_c Length of the cantilever f_c Concrete compressive strength, average of 3 cubes α the angle of inclination ρ_v , ρ_h Web reinforcement ratio (vertical and horizontal), respectively.

3P sec 2 sec 1 2416 2012 0.30 0:30 0.30 2012 2@12 2016 2#16 1 0.12 0.12 0.10 0.50 0.50 0.50 0.10 sec 1 sec 2 1.70 • 0.10 0.50 1.00 0.10 **Fig.** (1): Details of beams A1 (α =0), As = 2 Φ 16mm (ρ =1.24)

Fig.(4): Details of beams B2(α =30), As = 4 Φ 16mm(ρ =2.48)

Fig. (5): Details of beams C1 (α =45), As = 2 Φ 16mm (ρ =1.24)

Fig. (7:) Details of beams D1 (α =60) As = 2 Φ 16mm, ρ =1.24

0.30 2412 0.30 2@12 4 16 4#16 0.12 0.12 sec 2 0.10 0.50 0.50 0.10 sec 1 1.16 12 . 0.50 0.54 10 o

Fig. (10): Details of beams E2 (α =90) As = 4 Φ 16mm, ρ =2.48

2.3 Test procedure

All beams with cantilever were tested under two point static loading one of the loads at cantilever end and other load effect on the mid span of tested beams the loads was increased up to (0.5, 1.5) tons respectively then; the load were applied in increments each of (0.5, 1.5) ton for the tested beam with cantilever concrete the load was kept constant every two successive increments for five minutes. During this period, the mid span deflection was recorded, cracks propagation was traced, and reading of strain gauges were recorded. For each beam, the total duration of loading up to failure was different depending upon the inclination beam cantilever (α) , percentage of longitudinal reinforcement ratios (ρ) .

2.3 Measured deformation of beams:

Strains of concrete and steel were measured by means of electrical strain gauges at the shown positions in Fig (11). The gauge length was 52mm, and the 800mm resistance was 600 ohms and gauge factor $(2 \pm 0.75\%)$. Strain gauges were connected to strain indicator with its box resistance.

Fig. (11). Method of measuring deformation of beams.

III. Test Result

3.1 Crack pattern and mode of failure

The crack pattern and mode of failure are explained for the tested reinforced concrete beams with inclined cantilever.

All beams failed in shear, in spite of the different amount of reinforcement(ρ) that considered in the tests, in the early stages of loading, no flexural cracks were observed in the region of bending moment as the applied load increased. With a further increase of load, diagonal cracks formed in the shear span area and developed towards the loading points and supports.

It is worth mentioning that for all beams which failed in diagonal tension, the inclination of the major crack making an angle between 38° to 63° for all beams.

The failure modes of beams in groups A to E are presented in table (3); the most common failure for the tested beams is a diagonal tension failure. The shear failure in beams is always initiated by splitting action Diagonal tension was observed in beams of groups (A, B, C, D, and E) at critical shear zone between the cantilever span and mid span of beams .

The amount of longitudinal steel ratio (ρ) has no effect on final mode of failure. The presence of stirrups is very essential to resist shearing stresses. Consequently, it has a considerable effect on pattern of cracks and modes of failure. The stirrups importance once already appeared at instant of the first inclined crack formation.

Therefore, stirrups must be arranged in such a way that any probable diagonal tension crack should be encountered with at least more than one stirrup. I.e. to ensure that any potential diagonal tension crack encounters a stirrup and does not open excessively and consequently the risk of the beam at the level of tension steel or the sudden failure without warning is prevented.

The observed failure which accompanied by a vertical displacement as well as vertical sliding between the two adjacent portions of the beam just to the load points preceded by diagonal crack is denoted by diagonal tension failure.

The cracking and ultimate loads were recorded in table (3) and the deflection and strain for concrete were given in Table (4). Mode of failure for each beam was as follow:

Fig (14) Crack pattern of beam (B1)

D.T Diagonal tension.

D.T&S.C Diagonal tension and shear compression.

3.2 Deflection characteristics.

The measured values of maximum deflection are plotted versus the applied load from starting the loading up to failure as shown in Fig. (22) To Fig. (27).

3.3 Concrete Strain Distribution.

Figures (28) to fig (30), shows the behavior of the concrete strain in compression for all beams. The results indicated that all specimens presented almost have the same trend where the load increased, the strain also increased.

3.4 Load-Slope characteristics

The maximum measured slope at the center of roller support of the beams is plotted versus the applied load from zero loading up to failure as Shown in Fig. (31). generally the load –slope curve of the tested beams can be divided into three distinct stages As follows:

- a- a-The first stage: The un-cracked beams had relatively high flexural Rigidity. Consequently the slope of the load-slope curve in this stage was Steeper than the other stages.
- b- b-The second stage: The shear cracks started to form. As the applied Loads was increased, cracks propagated and their width and length Increased. Hence, the slope of the load-slope curve became flatter than the First stage.
- c- c-The third stage: The beams started to fail and the slope of the load-slope Curve became flatter than the second stage.

IV. Discussion of Test Result

This item describes and interprets the analysis of the obtained test results of the beams with inclined cantilever. The analysis includes the relationship between the value of cracking and ultimate loads, deflection; and concrete strain for tested beams. The characteristic of tested beams at cracking, ultimate load, deflection and strain are given in tables (3). The values of the experimental measured parameters of beams are shown in figures (12) to (31). From item (3); it is obvious that, all beams failed in shear or shear compression. In the early stages of loading, no flexural cracks were observed in the region of bending moment or shear zone as the applied load increased. With a further increase of load, diagonal cracks formed in the shear span area; and bending moment area and developed towards the loading points.

The failure modes of beams in groups A to E are presented in tables (3) the most common failure for the tested beams is a diagonal tension crack. The shear failure in beams is always initiated by splitting action. The amount of longitudinal steel ratio (ρ) has no effect on final mode of failure. The presence of inclination of angle (α) it has a considerable effect on pattern of cracks and modes of failure. The shear load was observed zone between the mid span load and the roller support. i.e. (through the critical shear zone) equal to double shear load on the cantilever beams. The effect of each parameter individually can be explained as follows:

4.1 Cracking and ultimate load (p_{cr}, p_u).

4.1.1 Effect of cantilever inclination (α): With respect to steel reinforcement As =2 Φ 16 (ρ = 1.24) and As =4 Φ 16 (ρ = 2.48) at span of cantilever and beams respectively.

4.1.1. 1-The shear cracking loads (Qcr) when the increasing of angle of $inclination(\alpha)$ has a slight effect on decreasing both the shear cracking load as follows:

From (α = 0.0° to 30°) the shear cracking load decreasing by (12.5, 20, 6.25 and 11 %)

From (α = 30° to 45°) the shear cracking load decreasing by (7.1, 2.5, 13.3 and 1.1%)

From (α = 45°to 60°) the shear cracking load decreasing by (30, 23, 23 and 24%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) increasing the shear cracking load by (30, 16.7,30 and 16.7) Shown in fig (32 to fig 35).

4.1.1.2- The ultimate loads (Pu) when the increasing of angle of inclination (α) has a slight effect on decreasing both the ultimate load as follows:

From (α = 0.0° to 30°) the ultimate load decreasing by (16.25, 14.1, 16.7 and 13.7)

From (α = 30° to 45°) the ultimate load decreasing by (25.3, 22.6, 25 and 22.7)

From (α = 45° to 60°) the ultimate load is constant

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) increasing ultimate load by (20, 18.6, 20 and 17.6) Shown in fig (32 to fig 35).

4.1.1.3- The flexural cracking loads (Pcr) at span of beams when the increasing of angle of inclination (α) has a slight effect on decreasing both the flexural cracking load as follows:

From (α = 0.0° to 30°) the flexural cracking load decreasing by (10 and 5%)

From (α = 30° to 45°) the flexural cracking load decreasing by (27 and 16.8%)

From (α = 45° to 60°) the flexural cracking load decreasing by (7.7 and 11.4%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) increasing the flexural cracking load by (16.6 and 14.3%) Shown in fig (34 and 35).

4.1.2 Effect of longitudinal steel ratio (ρ)

- **4.1.2.1** When the increasing of main longitudinal bars on cantilever the diagonal cracking load (Qcrb) and ultimate load (Pu) are increasing respectively as follows:
- For (α =0.0°) the values of loads increasing by (25 and 6.2%)
- For $(\alpha=30^{\circ})$ the values of loads increasing by (14.3 and 9%)
- For $(\alpha=45^\circ)$ the values of loads increasing by (20and 13%)
- For $(\alpha=60^\circ)$ the values of loads increasing by (20and 13 %)
- Finally the increasing inclination of angle from (90°) the values of loads increasing by (7.7 and 11.7 %) Shown in fig (36).

4.1.2.2 When the increasing of main longitudinal bars on beams the diagonal cracking load (Qcrb) flexural cracking load (Pcrb) and ultimate load (Pu) are increasing respectively as follows:

For (α =0.0°) the values of loads increasing by (12.5, 12.5 and 2%)

For (α =30°) the values of loads increasing by (6.7, 5.5 and 10%)

For (α =45°) the values of loads increasing by (21.5, 21.5 and 13.3%)

For (α =60°) the values of loads increasing by (20, 16.7 and 13.3 %)

Finally the increasing inclination of angle from (α =90°) the values of loads increasing by (7.7, 14.3 and 11.1 %) Shown in fig (37).

4.2 Maximum measured deflection (δ).

4.2.1. Effect of beams cantilever inclination (α) With respect to steel reinforcement As = 2 Φ 16 (ρ = 1.24) and As 4 Φ 16 (ρ =2.48) at span of cantilever and beams respectively.

4.2.1.1. The crack deflection (\delta cr) when the increasing of angle of inclination (α) has a slight effect on increasing the deflection of cracking load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the deflection crack increasing by (17.8, 16.7, 15.4 and 7.7%)

From ($\alpha = 30^{\circ}$ to 45°) the deflection crack increasing by (4, 2.9, 6.7 and 3.6%)

From ($\alpha = 45^{\circ}$ to 60°) the deflection crack increasing by (3.9, 8.3, 12.5 and 6.9%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) increasing the deflection cracking load by (3.8, 2.6, 5.5 and 9.7%) Shown in fig (38 to fig 41).

4.2.1. 2-The ultimate deflection (δu) when the increasing of angle of inclination has a slight effect on increasing the deflection ultimate load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the ultimate deflection increasing by (12, 16.7, 15.4 and 16.7%)

From ($\alpha = 30^{\circ}$ to 45°) the ultimate deflection is (constant, constant, 6.7 and 7.1%)

From ($\alpha = 45^{\circ}$ to 60°) the ultimate deflection increasing by (14.3, 3.6, 12.5 and 6.7%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) increasing the ultimate deflection by (3, 3.4, 5.5, 13.8%) Shown in fig (38 to fig 41).

4.2.2 Effect of longitudinal steel ratio (ρ)

4.2.2.1 When the increasing of main longitudinal bars on cantilever the deflection at cracking load (δcr) and deflection at ultimate load (δu) are increasing respectively as follows:

For (α =0.0°) the values of deflection decreasing by (3.2and 4%)

For (α =30°) the values of deflection decreasing by (4.1% and constant)

For (α =45°) the values of deflection decreasing by (5.2% and constant)

For (α =60°) the values of deflection decreasing by (1.25 and 9.4 %)

Finally the increasing inclination of angle from (α = 90°) the values of deflection decreasing by (2.4and 6 %) Shown in fig (42).

4.2.2.2 When the increasing of main longitudinal bars on beams the deflection at cracking load (δcr) and deflection at ultimate load (δu) are increasing respectively as follows:

For (α =0.0°) the values of deflection decreasing by (7and 7.7%)

For $(\alpha=30^\circ)$ the values of deflection decreasing by (3.4and 6.7%)

For (α =45°) the values of deflection decreasing by (3.3 and 6.2%)

For (α =60°) the values of deflection decreasing by (6 and 11 %)

Finally the increasing inclination of angle from ($\alpha = 90^{\circ}$) the values of deflection decreasing by (5.5and 4 %) Shown in fig (43).

4.3 Ultimate concrete compressive strains (ξc)

4.3.1 Effect of beams cantilever inclination (α): With respect to steel reinforcement at span of cantilever having As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48)

4.3.1.1 The ultimate concrete compressive strains (\xi c): When the increasing of angle of inclination (α) has a slight effect on decreasing the ultimate concrete compressive strains (ξc) as follows:

From (α = 0.0° to 30°) the ultimate concrete compressive strains decreasing by (16.7 and 18.2%)

From (α = 30° to 45°) the ultimate concrete compressive strains decreasing by (20% and constant)

From (α = 45°to 60°) the ultimate concrete compressive strains decreasing by (constant and 5.5%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) increasing the ultimate deflection by (33 and 5.9%) Shown in fig (44).

4.3.1.2 With respect to steel reinforcement at span of beams having As = $2\Phi 16$ (ρ = 1.24) and As $4\Phi 16$

(p =2.48)

The ultimate concrete compressive strains (ξc) when the increasing of angle of inclination has a slight effect on decreasing the ultimate concrete compressive strains (ξc) as follows:

From (α = 0.0° to 30°) the ultimate concrete compressive strains decreasing by (10.6 and 9.6%)

From (α = 30° to 45°) the ultimate concrete compressive strains decreasing by (14.3 and 14%)

From (α = 45°to 60°) the ultimate concrete compressive strains decreasing by (2.7 and 2.7%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) increasing the ultimate deflection by (14.3 and 16.6%) Shown in fig (45).

4.3.2 Effect of longitudinal steel ratio (ρ)

4.3.2.1 Effect of longitudinal steel ratio (ρ) at span of cantilever:

For $(\alpha=0.0^{\circ})$ the values of concrete compressive strains increasing by (22.2%) For $(\alpha=30^{\circ})$ the values of concrete compressive strains increasing by (16.7%)

For $(\alpha = 45^{\circ})$ the values of concrete compressive strains increasing by (10.7%)

For (α =60°) the values of concrete compressive strains increasing by (41.7%)

Finally the increasing inclination of angle from (90°) the values of concrete compressive strains increasing by (12.5 %) shown in fig (46).

4.3.2.2 Effect of longitudinal steel ratio (ρ) at span of beam:

For $(\alpha=0.0^{\circ})$ the values of concrete compressive strains increasing by (1.27)

For (α =30°) the values of concrete compressive strains increasing by (2.38%)

For (α =45°) the values of concrete compressive strains increasing by (2.7%)

For (α =60°) the values of concrete compressive strains increasing by (2.85%)

Finally the increasing inclination of angle from ($\alpha = 90^{\circ}$) the values of concrete compressive strains increasing by (5 %) shown in fig (47).

4.4 Maximum Slope of Beams at the Support 4.4.1 Effect of beams cantilever inclination (α) The values of slope at different loads increase with the increase of the cantilever inclination (α) having As = 2 Φ 16 (ρ = 1.24) and As = 4 Φ 16 (ρ =2.48) the compared values of (θ cr) and (θ u) respectively: From (α =0.0° to30°) the compared values were (80 and 75%) (43 and 50%). From (α =30° to 45°) the compared values were (44.4 and 42.9%) (25 and 20.8%). From (α =45° to 60°) the compared values were (23 and 5%) (16 and 13.8%).

From ($\alpha = 60^{\circ}$ to 90°) the compared values were (43.75and 31.6%) (20.7 and 21.2%) shown in fig (48 and 49).

4.4.2Effect of longitudinal steel ratio (p)

For $(\alpha=0.0^{\circ})$ the values of slope increasing by 60 and 6.25%. For $(\alpha=30^{\circ})$ the values of slope increasing by 8.9 and 20%. For $(\alpha=45^{\circ})$ the values of slope increasing by 27 and 16%. For $(\alpha=60^{\circ})$ the values of slope increasing by 25 and 13.8%. For $(\alpha=90^{\circ})$ the values of slope increasing by 8.7 and 14.3% shown in fig (50)

4.5 Comparison between beam A1 (Ref) and tested beams.

Results for beams with cantilever have different in main reinforcement ratio and inclined cantilever (α) in shear region or in flexural zone with respect to results for beam(A1)are included in table (4) and shown in Figs (37)to figs (42).

Table (4): Comparison between A1 (Ref) and tested beams results.

· · ·	_					had								
	5	pecili	ient			bea	ams				La	anuievei	5	
Series No.	No	α	As	Qcr/Qcr (Ref)	Pcr/Pcr (Ref)	Pu/Pu (Ref)	ðcr/ðcr (Ref)	ðu/ðu (Ref)	€cx /€c(Ref)	Qcr/Qcr (Ref)	Pu/Pu (Ref)	ðcr/ðcr (Ref)	ðu/ðu (Ref)	€cx /€c(Ref)
^	A1	0.0°	2\$1 6	1	1	1	1	1	1	1	1	1	1	1
A	A2	0.0°	4016	1.12	1	1.06	0.93	0.92	1.01	1.25	1.06	0.97	0.96	1.22
P	B1	30°	2 ¢ 16	0.94	0.90	0.83	1.04	1.15	0.89	0.88	0.84	1.18	1.12	0.83
D	B2	30°	4\$\$\$\$\$\$\$\$\$\$\$\$\$	1.00	0.95	0.92	1.00	1.08	0.91	1	0.91	1.13	1.12	1.00
6	C1	45°	2 ¢ 16	0.81	0.75	0.63	1.07	1.23	0.79	0.81	0.63	1.23	1.12	0.67
C	C2	45°	4\$\$\$\$\$\$\$\$\$\$\$\$\$	0.87	0.79	0.71	1.04	1.15	0.77	0.87	0.71	1.16	1.12	1
D	D1	60°	2 ¢ 16	0.63	0.60	0.63	1.18	1.38	0.74	0.63	0.63	1.27	1.28	0.67
D	D2	60°	4\$1 6	0.75	0.70	0.71	1.10	1.23	0.77	0.75	0.71	1.26	1.16	0.94
E	E1	90°	2\$1 6	0.81	0.70	0.75	1.28	1.46	0.85	0.81	0.75	1.32	1.32	0.89
E C	E2	90°	4\$1 6	0.88	0.80	0.83	1.20	1.40	0.89	0.88	0.84	1.29	1.2	1

4.5.1 Effect of beams cantilever inclination (α)

4.5.1.1 With respect to steel reinforcement As = $2\Phi 16$ (ρ = 1.24) and As $4\Phi 16$ (ρ =2.48) at span of beams.

1-The shear cracking loads (Qcr) when the increasing of angle of inclination (α) has a slight effect on decreasing the shear cracking load were respectively as follows:

From (α = 0.0° to 30°) the compared values were (6% and constant)

From (α = 30° to 45°) the compared values were (19 and 1 %)

From (α = 45° to 60°) the compared values were (37 and 25 %)

Finally the increasing inclination of angle from (α = 60°to90°) the compared values were (19 and 12 %) Shown in fig (50 and 51).

2- The flexural cracking loads (Pcr) when the increasing of angle of inclination (α) has a slight effect on decreasing both the flexural cracking load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (10 and 5 %)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (35and 21%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (40 and 30%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (30 and 20 %) Shown in fig (50 and 51).

3- The ultimate loads (Pu) when the increasing of angle of inclination (α) has a slight effect on decreasing both the ultimate load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (17 and 8 %)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (37 and 29%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (37 and 29%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}$ to90°) the compared values were (25 and 17 %) Shown in fig (50 and 51).

4.5.1.2With respect to steel reinforcement having As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48) at span of cantilever beams.

1-The shear cracking loads (Qcr) when the increasing of angle of inclination has a slight effect on decreasing the shear cracking load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (12% and constant)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (35 and 2%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (37 and 25 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (19 and 12 %) Shown in fig (52 and 53).

2- The ultimate loads (Pu) when the increasing of angle of inclination has a slight effect on decreasing both the ultimate load as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (16 and 9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (37 and 29 %)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (37 and 29 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (25 and 16 %) Shown in fig (52 and 53).

4.6 Comparison between cracking and ultimate deflection.

4.6.1With respect to steel reinforcement As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48) at span of beams. 4.6.1.1-The deflection at cracking loads (δcr) when the increasing of angle of inclination (α) has a slight

effect on increasing the deflection as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (4% and constant)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (7 and 4%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (18and 10%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (28and 20%) Shown in fig (54and 55).

4.6.1.2- The deflection at ultimate loads (δu) when the increasing of angle of inclination (α) has a slight effect on increasing both the deflection as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (15and8 %)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (23and15 %)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (38and 23%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (46and40 %) Shown in fig (54and 55).

4.6.2With respect to steel reinforcement (As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48) at span of cantilever beams.

4.6.2.1-The deflection at cracking loads (\delta cr) when the increasing of angle of inclination (α) has a slight effect on decreasing the deflection as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (18and 13%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (23and16 %)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (27 and 26%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (32and 29%) Shown in fig (56and 57).

4.6.2.2- The deflection at ultimate loads (\delta u) when the increasing of angle of inclination (α) has a slight effect on increasing both the deflection as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (12and 12%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (12and 12%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (28and 16%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (32and20 %) Shown in fig (56and 57).

4.7 Comparison between the concrete strains due to ultimate load. 4.7.1With respect to steel reinforcement (As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48) at span of cantilever beams.

1- The concrete strains at ultimate loads ($\pounds u$) when the increasing of angle of inclination (α) has a slight effect on increasing the concrete strains as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (17% and constant)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (33% and constant)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (33and6 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (11% and constant) Shown in fig (58).

4.7.2With respect to steel reinforcement (As = $2\Phi 16$ (ρ = 1.24) and As = $4\Phi 16$ (ρ =2.48) at span of beams. 1- The concrete strains at ultimate loads (£u) when the increasing of angle of inclination (α) has a slight

effect on increasing the concrete strains as follows:

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (11and 9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (21and23 %)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (26and 23%)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (15and 11%) Shown in fig (59).

4.8 Effect of stresses due to Mx and Mt.

Beams with cantilever have different in inclined cantilever (α) and main reinforcement ratio (ρ) in shear region or in flexural zone. Included in table (5) and shown in Fig (60) and (61).

moun			м	σcrc	σu _c	σcrb	σu _b	
group	ŭ	IVIX IVIt		(kg/cm ²)	(kg/cm^2)	(kg/cm ²)	(kg/cm ²)	
A 1	0.00	5D	0	σ ₁ =137.2	σ ₁ = 274.3	σ ₁ = 274.3	σ ₁ = 823	
AI	0.0		•	$\sigma_2 = 0.0$	$\sigma_2 = 0.0$	$\sigma_2 = 0.0$	σ ₂ = 0.0	
Δ2	0.00	5D	0	σ ₁ =154.3	σ ₁ = 291.5	σ ₁ =308.7	σ ₁ =874.6	
A2	0.0		· ·	$\sigma_2 = 0.0$	$\sigma_2 = 0.0$	$\sigma_2 = 0.0$	$\sigma_2 = 0.0$	
P1	300	5D	3D	σ ₁ = 151.5	σ ₁ = 290	σ ₁ =326	σ ₁ =870	
ы	30		.51	σ ₂ =-25	σ ₂ = -59.6	$\sigma_2 = -59.8$	σ ₂ = -183	
B2	300	5D	3D	σ ₁ = 195	σ ₁ = 317	σ ₁ = 348	σ ₁ =956.9	
B2	. 50 .		.51	σ ₂ = -29	σ ₂ = -67	$\sigma_2 = -82$	σ ₂ = -202	
C1	450	5D	5D	σ ₁ = 172	σ ₁ = 265	σ ₁ =344.6	σ ₁ = 795.3	
			.51	σ ₂ = -60.5	σ ₂ = -93	σ ₂ = -121	$\sigma_2 = -280$	
C2	450	5D	5D	σ ₁ = 167	σ ₁ =300	$\sigma_1 = 418.8$	σ ₁ =901	
<u> </u>				σ ₂ = -59	σ ₂ = -103	$\sigma_2 = -148$	σ ₂ = -318	
D1	60°	5D	86D	σ ₁ =180	σ ₁ = 359.5	σ ₁ = 359.5	σ ₁ =1078	
21	~~		.001	σ ₂ =-94	σ ₂ = -188	σ ₂ = -188	σ ₂ = -564	
D2	60°	5D	86D	σ ₁ = 216	σ ₁ = 407	σ ₁ = 431.3	σ ₁ =1222	
102	00	.51	.001	σ ₂ = -113.3	σ ₂ = -213.3	$\sigma_2 = -226$	σ ₂ = -640	
E1	90°	0	5D	σ ₁ = 0.0	σ ₁ = 0.0	σ ₁ = 0.0	σ ₁ = 0.0	
101	2	>		σ ₂ =102.4	σ ₂ =189	σ ₂ =205	σ ₂ = 567	
E2	900	0	5D	σ ₁ = 0.0	$\sigma_1 = 0.0$	$\sigma_1 = 0.0$	σ ₁ = 0.0	
152	50	°		σ ₂ = 109	σ ₂ =210	$\sigma_2 = 220.5$	$\sigma_2 = 630$	

Table (5): stresses due to bending moment (M_x) and torsion (Mt).

4.8.1 With respect to steel reinforcement As =2 Φ 16 (ρ = 1.24) at span of cantilever and beams respectively:

4.8.1.1- The cracking stresses (σ cr) when the increasing of angle of inclination (α)

from ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (7.4 and 22.7%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (17.4 and 21.9%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (45.8 and 66.8 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (56.3 and 53.4) Shown in fig (60).

4.8.1.2- The ultimate stresses (σ u) when the increasing of angle of inclination (α)

from ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (7.7 and 5.7%) From ($\alpha = 30^{\circ}$ to 45°) the compared values were (5.6 and 8.5%) From ($\alpha = 45^{\circ}$ to 60°) the compared values were (35.6 and 35.5%) Finally the increasing inclination of angle from ($\alpha = 60^{\circ}$ to 90°) the compared values were (47.4 and 47.4) Shown in fig (60).

4.8.2With respect to steel reinforcement As =4 Φ 16 (ρ = 2.48) at span of cantilever and beams respectively: 4.8.2.1- The cracking stresses (σ cr) when the increasing of angle of inclination (α)

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (18.1 and 12.2%) From ($\alpha = 30^{\circ}$ to 45°) the compared values were (21.9 and 6.9%) From ($\alpha = 45^{\circ}$ to 60°) the compared values were (24.8 and 54.4 %) Finally the increasing inclination of angle from ($\alpha = 60^{\circ}$ to 90°) the compared values were (54.6 and 53.6) Shown in fig (61).

4.8.2.2- The ultimate stresses (σ u) when the increasing of angle of inclination (α):

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (8.7 and 9.4%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (8 and 5.8%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (35.45 and 35.6 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (48.1 and 48.4%) Shown in fig (61).

Comparison between the test results and the theoretical values for beam A1according ACI and ECP codes are given in table (6).

Table (6): Comparison between the test results and the theoretical	values for beam A1according ACI and
ECP codes.	

Series No.	Beam No.	α	As	Qcr b test (t)1	Qcr c test (t)2	Qcr ACI (t) 3	QerECP (t) 4	Qcr1/Qcr3	Qcr1/Qcr4	Qcr2/Qcr3	Qcr2/Qcr4	pu b test (t)5	pu c test (t)6	pu ACI (t) 7	pu ECP (t) 8	pu 5/pu7	pu5/pu8	pu 6/pu7	pu 6/pu8
^	Al	0.0	2∳16	8	4	<mark>2.3</mark> 5	3.79	3.4	2.11	1.70	1.06	24	8	9.4	11.1	2.6	2.16	<mark>0.8</mark> 5	0.72
^	A 2	0.0	4¢16	9	4.5	2.35	3.79	3.83	2.37	1.91	1.19	25.5	8.5	9.4	11.1	2.71	2.30	0.90	0.77
в	в1	30.	2∳16	7.5	3.5	2.3	3.75	3.26	2.00	1.52	<mark>0.9</mark> 3	20	6.7	9.3	11.0	2.15	1.82	0.72	0.61
0	B 2	30°	4∳16	8	4	2.3	3.75	3.48	2.13	1.74	1.07	22	7.3	<mark>9.3</mark>	11	2.37	2.00	0.78	0.66
C	C1	45°	2∳16	<mark>6.5</mark>	3.25	2.28	3.72	2.85	1.75	1.43	0.87	15	5	<mark>9.2</mark>	10.9	1.63	1.38	0.54	0.46
Č	C2	45°	4φ16	7	3.5	2.28	3.72	3.07	1.88	1.54	0.94	17	5.65	9.2	10.9	1.85	1.56	0.61	0.52
D	Dl	60°	2∳16	5	2.5	2.2	3. <mark>6</mark> 5	2	1.37	1.14	0.68	15	5	9	10.7	1.67	1.40	0.56	0.47
U	D 2	<mark>60°</mark>	4¢16	6	3	2.2	3. <mark>6</mark> 5	2.73	1.64	1.36	0.82	17	5.65	9	10.7	1.89	1.59	0.63	0.53
F	El	90°	2¢16	<mark>6.5</mark>	3.25	2.28	3.72	2.85	1.75	1.43	0.87	18	6	9.2	10.9	1.96	1.65	0.65	0.55
E	E2	90°	4¢16	7	3.5	2.28	3.72	3.07	1.88	1.54	0.94	20	6.7	9.2	10.9	2.17	1.83	0.73	0.61

4.9 Effect of beams cantilever inclination (α):

4.9.1 With respect to steel reinforcement at span of beams having As = $2\Phi 16$ (ρ = 1.24)

4.9.1.1- The cracking loads (Qcr) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (6.25, 2.12 and 1.05%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (13.3, 0.87 and 0.8%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (23, 3.5 and 1.9 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}to90^{\circ}$) the compared values were (30, 3.65 and 1.9%) Shown in fig (62).

4.9.1.2- The ultimate loads (Pu) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI. Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (16.7, 1.06 and 0.9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (25, 1.07 and 0.9%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (25, 2.18 and 1.84 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (20, 2.2 and 1.87%) Shown in fig (63).

4.9.2 With respect to steel reinforcement at span of beams having As = $4\Phi 16$ (ρ = 2.48)

1- The cracking loads (Qcr) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI. Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (11.1, 2.12 and 1.05%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (12.5, 0.87 and 0.8%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (14.3, 3.5 and 1.9 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ}$ to 90°) the compared values were (16.7, 3.65 and 1.9%) Shown in fig (64).

2- The ultimate loads (Pu) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (14, 1.06 and 0.9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (29, 1.07 and 0.9%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (constant, 2.18 and 1.84 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (17.7, 2.2 and 1.87%) Shown in fig (65).

4.9.3 With respect to steel reinforcement at span of cantilever having As = $2\Phi 16$ (ρ = 1.24)

4.9.3.1- The cracking loads (Qcr) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI. Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (12.5, 2.12 and 1.05%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (7.1, 0.87 and 0.8%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (23, 3.5 and 1.9 %)

Finally the increasing inclination of angle from $\alpha = (60^{\circ} to 90^{\circ})$ the compared values were (30, 3.65 and 1. 9%) Shown in fig (66).

4.9.3.2- The ultimate loads (Pu) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI. Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (16.25, 1.06 and 0.9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (25.4, 1.07 and 0.9%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (constant, 2.18 and 1.84 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (20, 2.2 and 1.87%) Shown in fig (67).

4.9.4 With respect to steel reinforcement at span of cantilever having As = $4\Phi 16$ (ρ = 2.48)

4.9.4. 1-The cracking loads (Q_{cr}) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (11.1, 2.12 and 1.05%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (12.5, 0.87 and 0.8%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (14.28, 3.5 and 1.9 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (16.7, 3.65 and 1.9%) Shown in fig (68).

2- The ultimate loads (Pu) when the increasing of angle of inclination (α) from the test results and the predicted values by ACI. Code and ECP equations respectively.

From ($\alpha = 0.0^{\circ}$ to 30°) the compared values were (14.1, 1.06 and 0.9%)

From ($\alpha = 30^{\circ}$ to 45°) the compared values were (22.6, 1.07 and 0.9%)

From ($\alpha = 45^{\circ}$ to 60°) the compared values were (constant, 2.18 and 1.84 %)

Finally the increasing inclination of angle from ($\alpha = 60^{\circ} to 90^{\circ}$) the compared values were (18.6, 2.2 and 1.87%) Shown in fig (69).

V. Conclusions

An experimental work was under taken to investigate the effectiveness of cantilever Inclination (α) and longitudinal steel ratio (p) on the shear strength of reinforced concrete beams with cantilever under static loading. The following conclusions can be made from the experimental results.

- (1) When the angle of cantilever beam (α) equal to (0.0) has a slight effect on increasing both the cracking and ultimate loads.
- (2) The increasing of angle of inclination from $(30^{\circ} to 45^{\circ})$ has a slight effect on decreasing both the cracking and ultimate loads but have an important effect on the maximum deflections, maximum strains and the over all stiffness of beams without any noticeable change in its mode of failure.
- (3) The increasing of angle of inclination from $(45^{\circ}to 60^{\circ})$ has a slight effect on decreasing both the cracking and ultimate loads but have an important effect on the maximum deflections, maximum strains and the over all stiffness of beams without any noticeable change in its mode of failure.
- (4) The increasing of angle of inclination from (60 to 90) has a slight effect on increasing both the cracking and ultimate loads but have an important effect on the maximum deflections, maximum strains and the over all stiffness of beams without any noticeable change in its mode of failure.
- (5) The maximum measured deflection increases, with the increase of the angle of inclination (α) Also the cracking and ultimate deflection decrease.
- (6) The addition of main longitudinal bars had a significant effect on the diagonal cracking load, and ultimate load.
- (7) The ultimate shear strength is increased by the increase of main longitudinal bars.
- (8) Horizontal reinforcement ratio has a pronounced effect in controlling torsion.
- (9) The shear load (Qcr) was observed at zone (2) between the mid span load and the roller support. i.e. (through the critical shear zone) equal to double shear load on the cantilever beams.
- (10) The best values of results occurred at angle of cantilever inclination (α) for (α =45°) than other cases of the tested beams.
- (11) The values of the cracking shear strength of the tested beams show more save in comparison with the corresponding recommended values given in ACI code equation and Egyptian code equation

References

- Arabic code for design and construction of concrete structure 2012. [1].
- ACI (318-83) Building Code Requirements for Reinforced concrete. [2].
- Frank Lloyd Wright preserving significance an Architect, his Innovation, and achieving the organic. [3].
- [4]. Mashhour Ahmed Gohneim, design of reinforced concrete structures (volume 1) professor of concrete structures Cairo University. Torsion CB110 and ACI318 codes compared.

سلوك الكمرات الخرسانية المسلحة ذات الكوابيل المائلة

سبوك العربي الملخص العربي متناول هذه الرسالة دراسة معملية لعشر كمرات ذات كوابيل مستقيمة (0) وكوابيل مائلة بدرجة (90,60,45,30) وذلك لدراسة مدي تأثير ميول الكابولي علي الكمرة مع اختلاف زاوية الميل. الهدف الرئيسي من هذا البحث هو دراسة السلوك الخاص بالكمرات ذات الكوابيل المائلة وذلك تحت تأثير الاحمال الاستاتيكية الكبيرة بداية من المرحلة المرنه منتهية بحد الانهيار. ومن اهم المتغيرات التي تم دراستها في هذا البحث هي : نسبة حديد التسليح الرئيسي في الكمرات ومن اهم المتغيرات التي تم دراستها في هذا البحث هي : مسبق

جميع الكمرات تم تصنيعها وتجهيز ها للاختبار تحت تأثير حملين الاول اعلي منتصف الكمرة والثاني اعلي طرف الكابولي وتصل قيمتة ثلث قيمة الحمل علي الكمرة. جميع الكمرات تم تصنيعها من الخرسانة ذات مقاوم 25% كجم/ سم². وقد اظهرت النتائج ما يلي :

- معهرك المصح مديني . (1) في حالة زاوية ميل الكابولي تساوي 0.0) فان ذلك لة تاثير واضح علي زيادة اقصي حمل في الكمرة والكابولي. (2) في حالة زيادة زاوية ميل الكابولي من 0.0 الي 60) فان زلك لة تاثير واضح علي نقص قيمة الاحمال علي الكمرة علي الرغم من زيادة قيم الترخيم والانفعال في الكمرة والكابولي. (3) في حالة زيادة زاوية ميل الكابولي من 60 الي 90) بدات قيمة الاحمال علي الكمرة والكابولي في الزيادة مرة اخري . (4) اضافة حديد التسليح الرئيسي في الكمرات لة تاثير واضح علي الشروخفي الكمرات وعلي قيم اقصي حمل . (5) أضافة حديد التسليح الجانبي في الكمرات لة تاثير واضح علي مقاومة عزوم اللي.

(6) اقصتى اجهاد للكمرات يزداد بزيادة حديد التسليح الرئيسي.

- توصيات البحث والدراسة: 1 دراسة مدى تأثير بعض العوامل الأخرى على سلوك القص للكمرات الخرسانية المسلحةات الكوابيل المائلة عالية المقاومة مثل تأثير الالياف و درجة الحرارة والرطوبة. 2مرسم²
- دراسة نفس العوامل الحالية مع استخدام أنواع أخرى من الخرسانة عالية المقاومة والتي تصل مقاومتها إلى1200 كجم/سم2.