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Abstract : This paper presents forced vibration analysis of low suspended reinforced concrete highway viaducts 

pavement using split deflection method. The split-deflection approach was used in formulating the total potential 

energy functional for a suspended thin rectangular reinforced concrete Pavementsubjected forced vibration. 

This functional was subjected to both general and direct variations by minimizing it with respect to deflection 

function and coefficient of deflection respectively. General variation gave the governing equation from where the 

expression for deflection was obtained. In the same way, direct variation gave the formula for determining the 

coefficient of deflection of the pavement. The obtained deflection function is of polynomial family. The boundary 

condition for pavement with four sides simply supported was satisfied in the deflection equation to obtain the 

exact deflection equation for the pavement. This function was used in numerical forced vibration analysis of the 

pavement. Theresults show that the maximum percentage differences recorded for pure bending analysis of ssss 

and cscs plates of present study with previous results are 4.86% and 4.88%. It is seen that the pavement becomes 

dynamic when forced frequency gets up to 30% of the fundamental natural frequency. 

Keywords: Forced vibration, split-deflection, total potential energy functional, direct variation, general 

variation, trigonometric family, concrete pavement, pavement 
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I. Introduction 
Most of the earlier scholars based their Classical plate theory (CPT) vibration analysis on the Naviar’s 

and Levy’s approaches ([1], [2], [3]). These methods present difficulty in satisfying the boundary conditions of 

plates. This difficulty led many scholars to resort to energy methods such as Raleigh, Raleigh-Ritz, minimum 

potential energy, Galerkin, work-error etc. ([1], [3], [4]). Use of single orthogonal deflection 

functionscharacterizes analyze by energy methods. Hence, the reason why most scholars use assumed deflection 

functions as against integrating the governing equation. However, one can still integrate the governing equation 

while using the energy approach. The major difficulty encountered is to separate single orthogonal deflection 

function into two distinct and independent components. Based on the literature reviewed, most earlierstudies on 

forced vibration analyses of thin plates used this single orthogonal deflection function ([5], [6], [7], [8], [3], [9], 

[10], [11], [12]). This problem was addressed by Reference [13]when they introduced the use of two independent 

and distinct functions to replace the single orthogonal function ( w = wx × wy). This approached worked. 

However, their work was based on assumed deflection function.  Besides energy approach, another popular 

approach is the numerical approach. This include finite element, finite strip, Runge-Kuta, finite difference etc. 

([14], [15]). To overcome the gaps presented herein, this present study tried to use split deflection approach and 

integrate the governing equation to arrive at exact non-assumed deflection function. In doing this, the present 

work relied on the split-deflection equation given by Reference [13]as: 

 w = wx . wy                                                                                                                                   1a 

 w = Axhx . Ay hy = Ahx . hy                                                                                                        1b 

wx and wy are the two distinct and independent components of deflection along x and y directions 

respectively. Their respective shape functions are hx and hyand A is deflection coefficient 

 



Forced Vibration Analysis of Low Suspended Reinforced Concrete Highway Viaducts Pavement us…. 

DOI: 10.9790/1684-1601055160                                  www.iosrjournals.org                                             52 | Page 

II. Theoretical approach 
2.1Total potential energy 

The strain energy, U is defined using the stresses and strains as: 

U =
1

2
   (σ

xx
εxx + σyy εyy + τxy γ

xy
)

t
2 

−t
2 

b

0

a

0

dxdy dz                                                    2 

The normal stresses along x and y directions are denoted with σxx and σyy, while the normal strains along x and y 

directions are εxx and εxx. The shear stress and strain within the x-y plane are respectively denoted as xy and γxy. 

The strains, which are the ratios of displacements to original lengths, are defined as: 

εxx =
du

dx
= −Z

d2w

dx2
                                                                                                                 3 

εyy =
dv

dy
= −Z

d2w

dy2
                                                                                                                 4 

γ
xy

=
du

dy
+

dv

dx
− 2Z

d2w

dxdy
                                                                                                      5 

From constitutive relations, the stresses are defined as: 

σxx =
E

1− μ2
 εxx + μεyy  =

−EZ

1− μ
 
d2w

dx2
+ μ

d2w

dy2
                                                         6 

σyy =
E

1 − μ2
 μεxx + εyy  =

−EZ

1 − μ
 μ

d2w

dx2
+

d2w

dy2
                                                         7 

τxy =
E 1 − μ 

2 1 − μ2 
γ

xy
=
−EZ 1 − μ 

(1 − μ2)
 .

d2w

dxdy
                                                                       8 

The Young’s modulus of elasticity and the Poisson’s ratio of the plateare denoted with E and µ respectively.  

The work on the plate due to the applied lateral and inertia loads is given as: 

V =
1

2
   qw + mθ

2w2 

yx

 dxdy                                                                                                    9 

Adding equations 2 and 9 algebraically gives the total potential energy functional as: 

Π =
1

2
   (σ

xx
εxx + σyy εyy + τxy γ

xy
)

t
2 

−t
2 

b

0

a

0

dxdy dz −
1

2
   qw + mθ

2w2 

yx

 dxdy     10 

Substituting Equations 1, 3, 4, 5, 6, 7 and 8 into Equation 10and carrying out the integration with respect to z 

coordinate gives: 

Π =
D

2
    

d2wx

dx2
 

2

wy
2 + 2  

dwx

dx
.
dwy

dy
 

2

+  
d2wy

dy2
 

2

wx
2 −

q

D
wx wy

yx

−
mθ2

D
 wxwy 

2
 dxdy                                                                                       11 

In a similarly manner, substituting Equations 2, 3, 4, 5, 6, 7 and 8 into Equation 10 and carrying out the 

integration with respect to z coordinate gives: 

Π =
A2D

2
    

d2hx

dx2  

2

hy
2 + 2 

dhx

dx
.
dhy

dy
 

2

+  
d2hy

dy2  

2

hx
2 −

q

AD
hxhy

yx

−
mθ2

D
 hxhy 

2
 dxdy                                                                                          12 

The flexural rigidity, D of the plate defined as: 

D =
Et3

12 1− μ2 
                                                                                                                                 13 

Where t is the thickness of plate.  
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It is more expedient representing the coordinates x, y and z with their non-dimensional forms R, Q and S 

respectively. R is ratio of x to a (that is R = x/a) while Q is the ratio of y to b (that is Q = y/b). Equations 11 and 

12 were written in terms of the non dimensional coordinates as: 

Π =
D

2a4
    

d2wx

dR2
 

2

wy
2 +

2

p2
 

dwx

dR
.
dwy

dQ
 

2

+
1

p4
 

d2wy

dQ2
 

2

wx
2 −

2qa4

D
wx wy

1

0

1

0

−
mθ2a4

D
wx

2wy
2 abdRdQ                                                                               14 

Π =
A2D

2a4
    

d2hx

dR2
 

2

hy
2 +

2

p2
 

dhx

dR
.
dhy

dQ
 

2

+
1

p4
 

d2hy

dQ2
 

2

hx
2 −

2qa4

AD
hxhy

1

0

1

0

−
mθ2a4

D
hx

2hy

2
 ab dRdQ                                                                              15 

The aspect ratio, p is defined as the ratio of b to a (p = b/a). 

 

2.2 Determination of the split deflection functions  

Since the total potential energy functional is in terms of the distinct split deflection, wx and wy, it will be wise to 

rearrange it. Thus, rearranging equation 14 gives: 

Π =
D

2a4
     

d2wx

dR2
 

2

wy
2 −

2qa4

D
wx wy −

mθ2a4

D
wx

2wy
2
 

1

0

1

0

+  
1

p4
 

d2wy

dQ2
 

2

wx
2 +

2

p2
 

dwx

dR
.
dwy

dQ
 

2

  abdRdQ                                  16 

Where: 

nx + ny = 1                                                                                                                                         17 

In a simpler form, equation 16 is written as: 

Π = Πx + Πy                                                                                                                                        18 

Where: 

Πx =
D

2a4
    

d2wx

dR2
 

2

wy
2 −

2qa4

D
wx wy −

mθ2a4

D
wx

2wy
2
 abdRdQ

1

0

1

0

                         19 

Πy =
D

2a4
   

1

p4
 

d2wy

dQ2
 

2

wx
2 +

2

p2
 

dwx

dR
.
dwy

dQ
 

2

 abdRdQ

1

0

1

0

                                            20 

Thus, minimizing Equation 19 with respect to wx gives:          

dΠx

dwx

=
D

2a4
   2

d4wx

dR4
wy

2 −
2qa4

D
wy − 2

mθ2a4

D
wx wy

2 abdRdQ = 0

1

0

1

0

 

That is: 

 
d4wx

dR4

1

0

dR . wy
2

1

0

dQ − 
qa4

D

1

0

dR . wy

1

0

dQ − 
mθ2a4

D
wx

1

0

dR . wy
2

1

0

dQ = 0              21 

In a similarly way, minimizing Equation 20 with respect to wy gives:          

dΠy

dwy

=
D

2a4
   

2

p4

d4wy

dQ4
wx

2 +
4

p2
.
d2wy

dQ2
 

dwx

dR
 

2

 abdRdQ

1

0

1

0

= 0.  That is: 

 wx
2dR

1

0

. 
d4wy

dQ4

1

0

dQ + 2p2 .  
dwx

dR
 

2

dR

1

0

. 
d2wy

dQ2

1

0

dQ = 0                                                 22 

Carrying out the integration of Equation 21 with respect to Q and rearranging the outcome gives: 

  
d4wx

dR4
−

w3

w4

qa4

D
−

mθ2a4

D
wx 

1

0

dR = 0                                                                                    23 

Where w3 and w4 are constants defined mathematically as: 
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w3 =  wy

1

0

dQ; w4 =  wy
2

1

0

dQ  

Carrying out the integration of Equation 22 with respect to R and rearranging the outcome gives: 

  
d4wy

dQ4
+

2p2w2

w1

d2wy

dQ2
 

1

0

dQ = 0                                                                                     24 

Where w1 and w2 are constants defined mathematically as: 

w1 =  wx
2

1

0

dR; w2 =   
dwx

dR
 

2
1

0

dR  

For the case of pure bending (that is in the absence of inertia force), equations23 become: 

  
d4wx

dR4
−

w3

w4

qa4

D
 

1

0

dR = 0                                                                                             25 

In the same way, for the case of free vibration (that is in the presence of only the inertia force), 

equations 23 become: 

  
d4wx

dR4
−

mθ2a4

D
wx 

1

0

dR = 0                                                                                        26 

The ready solutions for the equations 25 and 26 for pure bending and free vibration respectively are: 

wx = a0 + a1R + a2R2 + a3R3  + a4R4                                                                       27 

wx = c1eg1R + c2e−g1R + c3ejg1R + c4e−jg1R                                                             28 
Where d0, d1, d2, d3, d4, c1, c2, c3and c4 are integration constants, and 

g1
4 =

mθ2a4

D
                                                                                                                      29 

Transforming Equation 28 in trigonometric form gives: 

w = a1 cos g1R + a2 sin g1R + a3 cosh g1R +  a4 sinh g1R                                     30 

Where: a1 =  c3 + c4 ;  a2 =  jc3 − jc4 ;  a3 =  c1 + c2 ;  a4 =  c1 − c2  
In similar way, the ready solutions for the equations 24 is 

wy = d0 + d1Q + d2ejg2Q + d3e−jg2Q                                                                             31 

Where d0, d1, d2, d3and d4are integration constants, and 

g2
2 =

2p2w2

w1
                                                                                                                        32 

Transforming Equation 32 in Polynomial form gives: 

wy = b0 + b1Q + b2Q2 +
b3

3!
Q3 +

b4

4!
Q4 + .   .    .                                                        33 

Where: b0 = c1 + c2 + c3 + c4;  b1 = jc1 − jc2 + c3 − c4; 
bm

m!
= g2

m  jm c1 − jm c2 + c3 − c4 ;  
bm+1

 m + 1 !
= g2

m+1 jm+1c1 + jm+1c2 + c3 + c4  

m = 1, 3, 5,   .   .   . ,   ∞ 
Substituting Equation 27 and Equation 33 into Equation 1 gives: 

 w =  a0 + a1R + a2R2 + a3R3  + a4R4 .  b0 + b1Q + a2Q2 + a3R3  + a4Q4      34 

 

2.3 Determination of the formula for calculating coefficient of deflection for pavement under 

forced vibration 

Formula for calculating coefficient of deflection is obtained when the total potential energy 

functionalis minimized with respect the coefficient of deflection. After minimizing Equation 15 with 

respect to deflection coefficient the following was obtained: 
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dΠ

dA
=

AD

a4
    

d2hx

dR2  

2

hy
2 +

2

p2  
dhx

dR
.
dhy

dQ
 

2

+
1

p4  
d2hy

dQ2  

2

hx
2 −

qa4

AD
hxhy

1

0

1

0

−
mθ2a4

D
hx

2hy
2
 abdRdQ = 0                                                             35 

Rearranging and rewriting equation 35 gives: 

dΠ

dA
=  kxR . kxQ  +

2

p2  kxyR . kxyQ  +
1

p4  kyR . kyQ  −  
qa4

AD
 kqR  . kqQ  −

mθ2a4

D
 kyR  .  kxQ  = 0  36 

Where: 

kxR =   
d2hx

dR2  

2

dR
1

0

; kxQ =  hy
2

1

0

dQ ;   kxyR =   
dhx

dR
 

2

dR
1

0

;  kqR =  hxdR
1

0

 

kxyQ =   
dhy

dQ
 

21

0

dQ; kyR =  hx
2

1

0

dR; kyQ =   
d2hy

dQ2  

21

0

dQ; kqQ =  hy

1

0

dQ 

Rearranging Equation 36 gives: 
AD

qa4
=

kqR  . kqQ

kT −
mθ2a4

D
kyR  .  kxQ

                                                                                                         37 

Where: 

kT = kxR . kxQ +
2

p2
kxyR . kxyQ +

1

p4
kyR . kyQ  

Under free – vibration only, the denominator of Equation 37 shall be zero and the vibration frequency 

shall become the natural frequency, λ. This gives: 

kT −
mλ2a4

D
kyR  .  kxQ = 0                                                                                                           38 

Upon rearrangement of equation 38 the following equation is obtained: 

mλ2a4

D
=

kT

kyR  .  kxQ
                    39 

The forced frequency of the pavement ordinarily ranges from zero to a maximum value of the natural 

frequency. Thus: 

0 ≤   θ = n . λ  ≤  λ                                                                                                                     40 
Substituting the condition given in equation 40 into equation 39 gives: 

mθ2a4

D
= n2 .

kT

kyR  .  kxQ
                                                                                                                41 

By substituting equation 41 into equation 37 the following equation is obtained: 
AD

qa4
=

kqR  . kqQ

kT −  n2 .
kT

kyR  .  kxQ
 kyR  .  kxQ

.   That is: 

AD

qa4
=  

kqR  . kqQ

kT
 .

1

 1− n2 
= β                                                                                               42 

The formula for calculating the non-dimensional coefficient of deflection for pavement under forced 

vibration is as presented on equation 42.  

Rearranging equation 42 gives the following equations: 
AD

a2
= βqa2                                                                                                                                     43 

AD

a3
= βqa                                                                                                                                       44 

Substituting the equation 2 into the traditional equations for bending moment and shear forces of 

rectangular pavements, the following equations are obtained: 

mx =  −
AD

a2  
∂2hx

∂R2
. hy +  

μhx

p2
.
∂2hy

∂Q2                                                                                      45 
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my =  −
AD

a2  μhy .
∂2hx

∂x2
+   

hx

p2
.
∂2hy

∂y2                                                                                   46 

Vx =  −
AD

a3  hy .
∂3hx

∂R3
+

(2− μ )

p2
.
∂hx

∂R
.
∂3hy

∂Q2                                                                     47 

Vy =  −
AD

a3  
(2− μ )

p
 .
∂2hx

∂R2
.
∂hy

∂Q
  +

hx

p3

∂3hy

dQ3                                                                 48 

Substituting equations 43 into the equations 45 and 46 gives: 

mx =  −βqa2  
∂2hx

∂R2
. hy +  

μhx

p2
.
∂2hy

∂Q2                                                                               49 

my =  −βqa2  μhy .
∂2hx

∂x2
+   

hx

p2
.
∂2hy

∂y2  50 

Vx =  −βqa hy .
∂3hx

∂R3
+

(2− μ )

p2
.
∂hx

∂R
.
∂3hy

∂Q2                                                                   51 

Vy =  −βqa 
(2− μ )

p
 .
∂2hx

∂R2
.
∂hy

∂Q
  +

hx

p3

∂3hy

dQ3                                                               52 

2.4 Numerical analyses  

Analyze the classical rectangular thin rectangular isotropic pavements(i) with all the four edges simply 

supported (ssss) and (ii) with two opposite edges clamped and the other two edges simply supported 

(cscs) as shown on Figure 1. The Poisson’s ratio of the plate is 0.3. Points A (R = 0; Q = 1/2); B (R = 

1/2; Q = 0); C (R =1; Q=1/2); D (R =1/2; Q=1); E (R =1/2; Q=1/2). 

After satisfying the boundary condition for ssss and cscs pavement, the deflection components 

obtained are respectively: 

𝑤𝑥 = 𝐴𝑥 𝑅 − 2𝑅3 + 𝑅4 𝑎𝑛𝑑𝑤𝑦 = 𝐴𝑦 𝑄 − 2𝑄3 + 𝑄4                                           53 

𝑤𝑥 = 𝐴𝑥 𝑅 − 2𝑅3 + 𝑅4 𝑎𝑛𝑑𝑤𝑦 = 𝐴𝑦 𝑄
2 − 2𝑄3 + 𝑄4                                       54     

From Equation53the shape functionfor ssss pavement is: 

 ℎ𝑥 = 𝑅 − 2𝑅3 + 𝑅4𝑎𝑛𝑑ℎ𝑦 = 𝑄 − 2𝑄3 + 𝑄4                                                               55 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Diagram of rectangular ssss and cscs pavement shown the values of 

coordinates at various points 
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From Equation 54the shape functionfor cscs pavement is: 

hx = R − 2R3 + R4and hy = Q2 − 2Q3 + Q4                                                               56 

Thestiffness coefficients are calculated using the shape functions given in equations 55 and 55. They 

are tabulated on Table I. 
Table .I: Stiffness coefficients for plate with all four edges simply supported 

 𝑘𝑥𝑅  𝑘𝑥𝑄  𝑘𝑥𝑦𝑅  𝑘𝑥𝑦𝑄  𝑘𝑦𝑅  𝑘𝑦𝑄  

ssss 

4.8 
31

630
 

17

35
 

17

35
 

31

630
 4.8 

 
𝑘𝑞𝑅  𝑘𝑞𝑄  𝑘𝑥𝑅 . 𝑘𝑥𝑄  𝑘𝑥𝑦𝑅  . 𝑘𝑥𝑦𝑄  𝑘𝑦𝑅  . 𝑘𝑦𝑄  kqR . kqQ  

1

5
 

1

5
 

124

525
 

222

941
 

124

525
 

1

25
 

  

cscs 

𝑘𝑥𝑅  𝑘𝑥𝑄  𝑘𝑥𝑦𝑅  𝑘𝑥𝑦𝑄  𝑘𝑦𝑅  𝑘𝑦𝑄  

4.8 
1

630
 

17

35
 

2

105
 

31

630
 

4

5
 

 
𝑘𝑞𝑅  𝑘𝑞𝑄  𝑘𝑥𝑅 . 𝑘𝑥𝑄  𝑘𝑥𝑦𝑅  . 𝑘𝑥𝑦𝑄  𝑘𝑦𝑅  . 𝑘𝑦𝑄  kqR . kqQ  

1

5
 

1

30
 

4

525
 

1

108
 

5

127
 

1

150
 

 

For ssss pavement: 

kT =
124

525
+

2

p2
×

222

941
+

1

p4
×

124

525
=

124

525
 1 +

1.997703198

p2
+

1

p4
  

For cscs pavement: 

kT =
4

525
+

2

p2
×

1

108
+

1

p4
×

5

127
 =

4

525
 1 +

2.430555556

p2
+

5.167323

p4
  

Substituting these stiffness coefficients into equation 42 gives: 

For ssss pavement: 

AD

qa4
=  

1

25
124

525
 1 +

1.997703198

p2 +
1

p4 
 .

1

 1− n2 
= β .  That is:  

AD

qa4
=  

21

124  1 +
1.997703198

p2 +
1

p4 
 .

1

 1 − n2 
= β                                                     42a 

For cscs pavement: 

AD

qa4
=  

1

150
4

525
 1 +

2.430555556

p2 +
5.167323

p4  
 .

1

 1− n2 
= β  .  That is: 

AD

qa4
=  

7

8  1 +
2.430555556

p2 +
5.167323

p4  
 .

1

 1− n2 
= β 

The numerical values of the split deflection functions (equations 55 and 56) and their adjuncts at 

various points on the plate are presented on Table II. 

The result of the center deflection of the plate is compared with those from Reference [16]. 

Simplepercentage difference is the tool used for this comparison. The formula for percentage 

difference is: 

%𝐷𝑖𝑓𝑓 =  𝑎𝑏𝑠  
𝑤𝑝 −𝑤𝐸
𝑤𝐸

 × 100                   57 
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“abs”is absolute value, wpis deflection from present study and wEis the earlier scholar’s deflection. 
 

Table. II: Numerical values of functions and their adjuncts at various points on the plate 

Function 
ssss pavement cscs pavement 

Point A Point B Point E Point A Point B Point E 

h 0 0 25/256 0 0 5/256 

d2h

dR2
 0 0 -  15/16 0 0 -0.1875 

d2h

dQ2
 0 0 -  15/16 0 0.625 -0.3125 

d3h

dR3
 -3.75 0 0 -0.75 0 0 

d3h

dQ3
 0 -3.75 0 0 -3.75 0 

d3h

dRdQ2
 -3 0 0 -1 0 0 

d3h

dR2dQ
 0 -3 0 0 0 0 

 

III. Results and discussions 
The Stiffness coefficients for the ssss and cscs rectangular pavements are presented on Table I. They 

were obtained using the polynomial displacement functions. The pure bending results of the centre deflections, 

wc (qa4/D) for ssss and cscs pavements are respectively presented on Table III and Table IV. The dynamic 

bending results of the centre deflections, wc (qa4/D) for ssss and cscs pavements are respectively presented on 

Table V and Table VI.Maximum recorded absolute difference between the pure bending center deflection from 

the present study and those of Reference [16] as shown on Table III and Table IV are respectively 4.86% and 

4.88% for ssss and cscs pavements. This difference is as a result difference in methods used by the present study 

and the one used by Reference [16]. Reference [16] adopts a method close to Navier’s and Levy’s approach and 

the use of Fourier series as the displacement function.  However, the present study used method by Reference 

[13] and Reference [17] and the first mode of deformation polynomial deflection function. The closeness in the 

results as indicated by the percentage difference shows the sufficiency of the present analysis approach. 

Moreover, the use of split deflection methods makes the analysis very easy and straight forward. It is devoid of 

any complexity as normally evident in earlier works.  

The dynamic center deflections of the ssss and cscs pavements for various amounts of ratio of forced 

frequency to fundamental natural frequency and for various aspect ratio as presented on Table V and Table VI 

were determined. A close and critical look at the tables shows that vibrating pavement deflects more than static 

pavement. As the pavement is forced to vibrate at higher frequency, the more the deflection increases. This 

increase in deflection as the pavement is forced to vibrate is gradual when the value of n is in the range of 0.0 

and 0.3. The increase is moderate when the value of n is between 0.4 and 0.6. When the value of n is more than 

0.6, the increase becomes so rapid. Hence, it is recommended that the engineer should always provide a 

pavement with high mass per unit area, which reduces the forced frequency of the pavement. The more the mass 

per unit area of the pavement, the lower the forced frequency of the pavement, and vise-versa. The engineer 

should also ensure to design the pavement whenever the forced frequency gets up to 30% of the fundamental 

natural frequency of the pavement. So far, it is evident that the method applied in this present study is very 

sufficient and less complicated for forced vibration analysis of pavement. 

 

Table III: Centre deflection of ssss plate 
b/a wcpresent study wcReference [16] Percentage 

difference 
1 0.00414 0.00406 1.897 

1.1 0.00496 0.00485 2.280 
1.2 0.00576 0.00576 0.060 
1.3 0.00653 0.00638 2.371 
1.4 0.00726 0.00705 2.911 
1.5 0.00793 0.00772 2.729 
1.6 0.00856 0.0083 3.086 
1.7 0.00913 0.00883 3.425 
1.8 0.00966 0.00931 3.773 
1.9 0.01015 0.00974 4.165 
2 0.010623 0.01013 4.86 
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Table IV: Centre deflection of cscs plate 

b/a wcpresent study 

 

 

wcReference [16] Percentage difference 

1 0.00199 0.00192 3.525 

1.1 0.00261 0.00251 4.139 

1.2 0.00330 0.00319 3.426 

1.3 0.00402 0.00388 3.701 

1.4 0.00477 0.0046 3.626 

1.5 0.00551 0.00531 3.788 

1.6 0.00624 0.00603 3.515 

1.7 0.00695 0.00668 4.011 

1.8 0.00762 0.00732 4.115 

1.9 0.00826 0.0079 4.516 

2 0.00885 0.00844 4.883 

 

Table V; Center deflection, wc (qa4/D) for ssssplate for various aspect ratios and inertia load, 
b/a n = 0 n = 0.1 n = 0.2 n = 0.3 n = 0.4 n = 0.5 n = 0.6 n = 0.7 n = 0.8 n = 0.9 

1 0.00414 0.00418 0.00431 0.00455 0.00493 0.00552 0.00646 0.00811 0.01149 0.02177 

1.1 0.00496 0.00501 0.00517 0.00545 0.00591 0.00661 0.00775 0.00973 0.01378 0.02611 

1.2 0.00576 0.00582 0.00600 0.00633 0.00686 0.00768 0.00901 0.01130 0.01601 0.03033 

1.3 0.00653 0.00660 0.00680 0.00718 0.00778 0.00871 0.01021 0.01281 0.01814 0.03438 

1.4 0.00726 0.00733 0.00756 0.00797 0.00864 0.00967 0.01134 0.01423 0.02015 0.03819 

1.5 0.00793 0.00801 0.00826 0.00871 0.00944 0.01057 0.01239 0.01555 0.02203 0.04174 

1.6 0.00856 0.00864 0.00891 0.00940 0.01019 0.01141 0.01337 0.01678 0.02377 0.04503 

1.7 0.00913 0.00922 0.00951 0.01004 0.01087 0.01218 0.01427 0.01791 0.02537 0.04807 

1.8 0.00966 0.00976 0.01006 0.01062 0.01150 0.01288 0.01510 0.01894 0.02684 0.05085 

1.9 0.01015 0.01025 0.01057 0.01115 0.01208 0.01353 0.01585 0.01989 0.02818 0.05340 

2 0.01059 0.01070 0.01103 0.01164 0.01261 0.01412 0.01654 0.02076 0.02941 0.05573 

 

Table VI Center deflection, wc (qa4/D)for cscsplate for various aspect ratios and inertia load 
b/a n = 0 n = 0.1 n = 0.2 n = 0.3 n = 0.4 n = 0.5 n = 0.6 n = 0.7 n = 0.8 n = 0.9 

1 0.00199 0.00201 0.00207 0.00218 0.00237 0.00265 0.00311 0.00390 0.00552 0.01046 

1.1 0.00261 0.00264 0.00272 0.00287 0.00311 0.00349 0.00408 0.00513 0.00726 0.01376 

1.2 0.00330 0.00333 0.00344 0.00363 0.00393 0.00440 0.00516 0.00647 0.00916 0.01736 

1.3 0.00402 0.00406 0.00419 0.00442 0.00479 0.00536 0.00629 0.00789 0.01118 0.02118 

1.4 0.00477 0.00481 0.00497 0.00524 0.00567 0.00636 0.00745 0.00935 0.01324 0.02509 

1.5 0.00551 0.00557 0.00574 0.00606 0.00656 0.00735 0.00861 0.01081 0.01531 0.02901 

1.6 0.00624 0.00630 0.00650 0.00686 0.00743 0.00832 0.00975 0.01224 0.01734 0.03285 

1.7 0.00695 0.00702 0.00724 0.00764 0.00827 0.00926 0.01086 0.01362 0.01930 0.03657 

1.8 0.00762 0.00770 0.00794 0.00837 0.00907 0.01016 0.01191 0.01494 0.02117 0.04011 

1.9 0.00826 0.00834 0.00860 0.00907 0.00983 0.01101 0.01290 0.01619 0.02294 0.04346 

2 0.00885 0.00894 0.00922 0.00973 0.01054 0.01180 0.01383 0.01736 0.02459 0.04659 
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