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Abstract:  
A domain integral is frequently encountered in a variety of domains, including geometric modeling, robotics, 

computer-aided design (CAD), computer-aided engineering (CAE), computer-aided manufacturing (CAM), and 

in FEM solution procedures for boundary value problems. It is well known that any arbitrary domain can be 

conveniently divided into triangles, allowing triangular domain integral formulas to be used to compute 

integrals for such domains. The purpose of this research is to present unique and effective numerical 

integration formulas for triangular domain integrals. These formulas also allow for the efficient computation of 

integrals for functions with singularities at the triangle vertices. Furthermore, this note aims to include a 

complete FORTRAN code based on the developed formulas, assessing its accuracy and efficiency across a wide 

range of real-world applications. 
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I. Introduction 
Most domain integrals in science and engineering either cannot be evaluated analytically or their 

evaluation requires tedious, lengthy calculations. The finite element method (FEM) has recently acquired 

popularity because of its ability to solve field problems with complex domains that would otherwise be 

intractable using other numerical methods
1-3, 9, 14–15, 18, 20, 22–24

. 

Among the stages of the FEM solution procedure, the evaluation of domain integrals is a pivotal task 

that requires more computing time. More details on the complexities of such computations can be seen in
5-7, 10–

12, 19, 25, 27,29
. The employment, in FEM, of linear elements gives rise to the simple form of domain integrals to 

form element matrices. However, the use of higher-order as well as deformed finite elements generates a large 

number of rational integrals. Thus, in each of these situations, to compute element matrices, we need to evaluate 

numerically a significant number of integrals using costly numerical integration techniques
8, 13, 16, 17

. 

Among all the numerical integration techniques, Gaussian quadrature procedures are widely used to 

evaluate these integrals because of their correctness and computing efficiency
1, 20, 22, 23

. However, in order to 

achieve the necessary precision for triangle domain integrals, the existing Gaussian quadrature formulas, such 

as the 7-point and 13-point formulas, are inadequate
13

. A thorough analysis of this Gaussian quadrature rule 

limitation has also been done in works
4, 26, 28 

. 

The adaptability of triangular (lower- and higher-order) elements is widely known. The increased use 

of triangle elements necessitates further development of numerical integration formulas for triangular domain 

integrals. It is to be noted that high-order Gaussian quadrature formulas exist for square domain integrals; 

extending these to triangle domains is extremely difficult. Translating triangle domain integrals into square-

domain integrals leverages existing Gaussian quadrature to evaluate such triangular domain integrals
20, 

21
. However, this technique results in time-consuming and laborious calculations for evaluating these resulting 

rational integrals. 

Therefore, the task of this note is to present simple numerical techniques for which the resulting 

integrals will remain in the same form and can be computed efficiently with the desired accuracy. Furthermore, 

since any arbitrary domain can be easily discretized by triangles, any domain integral can be evaluated using the 

developed formulas for triangular domain integrals. As a result, such developed formulas will have wide-

ranging applications in science and engineering, as well as in the Finite Element Method (FEM) for dealing 

with boundary value problems 

 



An Efficient Numerical Integration Schemes For Triangular Domain Integrals 

DOI: 10.9790/1684-2102021621                               www.iosrjournals.org                                              17 | Page 

II. Numerical Integration Formula Using Linear Triangles 
Consider the triangular domain integral ∬           

 
. The isoparametric transformations for both 

the domain and the integrand from the global       space in to the local (     spaces are as the following: 

  ∑           

 

   

  ∑           

 

   

               ∑           

 

   

                             

The Jacobean matrix of the transformation is:  [

  

  
 

  

  

  

  

  

  

],  

where,          Coordinate of     node, 

                     Linear shape functions for triangular element,    

                       , Functional value at node    
 

 
(a) Triangle in       space            (b)   Mapped triangle in (     space 

Figure- 1.1:  Transformation of a triangle in       space in to a unit triangle in (     space. 

 

We have three global nodes                               and the linear shape functions for unit triangle 

are                                       . Then the transformation equations for   and   
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Similarly, the iso-parametric transformation for the integrand yields 
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And the determinant of the Jacobean matrix is 

| |  (                             );  [      Area of triangle in    space] 

Then, the domain integral under consideration can be written as: 
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This is the main (generating) formula to obtain the general formula for the triangular domain integrals. 

That means the formula in Eq. (1.5) can be used when the domain is subdivided by one or more triangles. We 

followed the technique that the subdivision can be done by subdividing each of the sides of the triangle into   

parts.  Accordingly, we derived the general formula for the said domain integral. 

 

Case-1: Now, if we subdivide each side of the triangle in to two (   ) parts as shown in the Fig.1.2 

then we have, the determinant of Jacobean for each new triangle [e] is   |  |  
 

 
| | , total number of triangles  

 , total number of nodes   . 

 

 
Figure 1.2: Triangular domain divided by 4 linear triangular elements 

 

If we apply the formula given in Eq. (1.5) for each of the triangle then we obtain, 

For element [1]:   

∬           
   

=|  |
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For element [2]:  

  ∬           
   

 = |  |
 

 
             =| |

 

  
                                                                   

For element [3]:   

 ∬           
   

 = |  |
 

 
             =| |

 

  
                                                                   

For element [4]:  

  ∬           
   

 = |  |
 

 
            = | |

 

  
                                                                   

Adding              for all the elements we get, 

∬          

 

 ∑ ∬           

   

 

   

 

 
| |

  
(                    )                                                                

 

Case-2: Now, if we subdivide each side of the triangle into three (   ) parts as shown in the Fig.1.3 then we 

have, the determinant of Jacobean for each new triangle [e] is  |  |  
 

 
| |, number of elements     and number 

of nodes     . 

 

 
Figure 1.3: Triangular domain divided by 9 linear triangular elements 
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If we apply the previous concept here we get the following, 
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For element [8]:  ∬            
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Adding              for all the elements we get, 
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If we continue the process for   subdivisions of each side of the triangle then we get the formula as: 

∬          
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Where for     subdivisions of each side of the triangle we have, 

 Number of triangular elements     

 Total number of nodes  
 

 
           

 Total mid side nodes with three vertices     

 Total internal nodes  
 

 
               

 

 
           

 

This is the general formula for triangular domain integral. Notice that this formula requires the 

weighted sum of functional values at node  , the number of triangles that node   connects, and a multiplier 
| |

   . 

So, this formula is memorable and manually usable. If the integrand has singularities at mid-side nodes or at 

internal nodes, the situation can be overcome by increasing the number of subdivisions. 

 

Algorithm Development: This FORTRAN code calculates the numerical integration over triangular 

surfaces by splitting the domain into     sub-triangles. 

 

1. Specify the integrand function         and for rational integrand,        and        . 

2. Define the coordinates of the vertices of the triangle as                           . 

3. Calculate the Jacobean of the triangle. 

4. Input the number of trials (  ) to evaluate the integral. 

5. Initialize trial counter    and refinement counter   . 

 

Loop over the trials: 

a. If the function is undefined at any of the corner nodes, adjust the corner nodes using a derived formula: 
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If               then      
           

  
  and       

           

  
 

Else if               then      
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b. Calculate the sum of function values at the corner nodes as 

                                     

c. Calculate the mid-nodes on the sides for             as 
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d. If     , calculate function values at nodes inside the triangle for                         
  as 

       Initially        and 

        
         

      

 
 

        
         

      

 
 

                               

 

6. Finally, Then the integral value for   subdivision is (FORMULA): 
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7. Increment the refinement counter. 

 

The algorithm starts by defining the triangular domain and iteratively refines the triangulation to improve the 

accuracy of the numerical integration.  
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Pseudo Code for Computer Code Implementation: 

 
 

Computer Program: A complete FORTRAN program “AIOTS13.FOR” has been developed and which is 

appended in appendix. 

III. Result  
Verification of the Formula (Eq. (1.8)) with Application Examples: Consider the integral ∬           

 
 

with vertices                         as shown in the following table. Computed results for different values of 

  (number of subdivisions) are listed in the following Table no 1.  

Table no 1: Examples of triangular domain integrals evaluated by formula given by Eq.       

 

No of 
Sub- 

Division 

(m) 

 

No of nodes 
          

 
 

       

     

(0,0), 

(1,0), 
(1,2) 

 

      
     
    

(0,0), 

(1,0), 

(1,3) 

      

      
 
  

(0,0), 

(1,0), 
(0,1) 

         
  |     | 

(0,0), 
(1,0), 

(1,1) 

       

         
 
  

(0,0), 

(1,0), 

(1,1) 

       

       
 
  

(0,0), 

(1,0), 

(0,1) 

1 3 1.33.. 1.5 0.333333 1.072761 0.520220   0.50  

2 6 1.33.. 1.21875 0.385110 0.805370 0.668635   0.603553   

3 10 1.33.. 1.166667 0.393742 0.756858 0.732580   0.631282   

4 15 1.33.. 1.148438 0.396601 0.739955 0.767191   0.643283   

5 21 1.33.. 1.14 0.397878 0.732145 0.788791   0.649739   

6 28 1.33.. 1.135417 0.398554 0.727906 0.803536   0.653679   

7 36 1.33.. 1.132653 0.398953 0.725351 0.814236   0.656292   

8 45 1.33.. 1.130859 0.399208 0.723694 0.822354   0.658130   

9 55 1.33.. 1.12963 0.399381 0.722558 0.828721   0.659481   

10 66 1.33.. 1.12875 0.399503 0.721745 0.833849   0.660509 

15 136 1.33.. 1.126667 0.399786 0.719821 0.849418   0.663273   

Exact   1.33… 1.1250 0.4 0.71828183 0.88137358 0.6666667 
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Result Discussion: Some important remarks from the Table no 1 are as follows:  

 Integration formula can evaluate exactly the integral when the integrand is a polynomial by increasing 

the number subdivisions. 

 Depending on the nature of the integrand the formula is slow in convergent. 

 Formula can be applied for the integrals when the integrand has the singularity at any vertices of the 

triangle. 

In the next section we wish to present the integration formulae that will be more efficient and applicable for 

evaluating the integral of the integrand with or without singularity at vertices. 

IV. Numerical Integration Formula using Cubic Triangle  
Here, we wish to derive the numerical integration formula by use of cubic triangles as show in the Fig.    . 

Specifically, the main formula will be derived first and that will be implemented similarly as it is shown in the 

previous case.  

 

Figure 2.1: Triangular domain subdivided into one cubic element 

 

Derivation of the Formula: Consider the triangular domain integral ∬           
 

 . Then isoparametric 

transformations for both the domain and the integrand from the global       space in to the local (     spaces 

are as the following:   
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Where, 

         Cubic shape functions for a unit triangle. 

          Nodal coordinate of     node. 

              Functional value of the integrand. 

As the sides of the triangles are straight lines determinant of the Jacobean is,  | |        
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Shape functions for    noded triangles are, 
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Then, the domain integral under consideration can be written as (from Eq.   ): 
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Using Eq.       in Eq.       we get the following, 
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Using the law,   ∫ ∫           
   

 

 

 
 

    

        
   in Eq.       we get, 
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 Test Examples: Consider the some integrals ∬           
 

 to evaluate with 

vertices                         by the above Formula (Eq. (2.5)). The followings listed in Table no 2 have 

been calculated by computer program using the formula:  

 

Table no 2: Examples of triangular domain integrals evaluated by formula given by Eq. (2.5) 

 
Integrand        Vertices of the domain Computed approximate value 

of the integral 

Exact value 

of the integral 

        (0,0), (1,0), (1,3) 1.1250 1.1250 

     
 
  

(0,0), (1,0), (0,1) 0.396583 0.4 

 |     | (0,0), (1,0), (0,1) 0.7184018 0.71828183 

        
 
  

(0,0), (1,0), (1,1) 0.70874297 0.88137358 

      
 
  

(0,0), (1,0), (1,1) 0.62232725 0.6666667 

 

V. Result 
Result Discussion: Some important remarks can be drawn from the Table no 2 as in the following: 

1. Numerical integration formula employing cubic triangular element is faster and gives exact result for the 

integrals of polynomial integrands. 

2. Depending on the nature of the non-polynomial integrand the convergence is faster than other derived 

formula. 

3. Formula can be applied for the integrals when the integrand has the singularity at any vertices of the triangle. 
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In the next section we wish to present the integration formula that will be more efficient and applicable for 

evaluating the integral of the integrand with or without singularity at vertices. 

 

VI. Conclusion 
For the first time, we have presented numerical integration two formulae for triangular domain 

integrals which are analogous in nature to trapezoidal, Simpsons and Weddles formulae which are applicable 

for one dimensional domain integrals. Integration formulae (given in Eq. (1.8) and Eq. (2.5)) so presented 

employing linear and cubic triangles are applicable to evaluate the triangular domain integrals of integrand with 

and without having singularity at vertices of the triangle. Through several test cases it is investigated that the 

desired accuracy of the domain integrals can be obtained. For the general purpose, we believe that the second 

integration formula will find better application in many areas of science and engineering. 
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A.1. Appendix 

We, for clarity and reference, are appending FORTRAN code for the first order integration formula. We hope 

that the code for the 3
rd

 order formula can be developed on the same way. 

Program for 1
st 

order formula: 

 

C       PROGRAM AIOTS13.FOR 

C ALGORITHMIC INTEGRATION OVER TRIANGULAR SURFACES SPLITING THE DOMAIN 

C INTO M*M SUB-TRIAGLES AND AT NODE (X1, Y1) FUNCTION IS UNDEFINED. 

C       ============================================================== 

       PARAMETER (N=500) 

       DOUBLE PRECISION X(3),Y(3),SUM,SUM1,SUM2,XA(N),XB(N),XC(N), 

     1 YA(N),YB(N),YC(N),AX,BX,CX,AY,BY,CY,XT(N,N), 

     2  YT(N,N),TX,TY,INTV,U,V,XT1,YT1,XT2,YT2,XT3,YT3,EXACT,ERR 

       Real F, G 

C      HERE THE INTEGRAND SHOULD BE GIVEN AS STATEMENT FUNCTION 

       G(U,V)=SQRT(U+V) 

       F(U,V)=1.D0/G(U,V) 

 

        OPEN( UNIT =2, FILE= 'a1.dat') 

        OPEN( UNIT =3, FILE= 'a2.dat') 

        EXACT=0.666667D0 

C      ============================================================= 

C 

C THIS PART WILL COMPUTE MID NODES ON THE SIDES AND FUNCTION VALUES AT 

C THESE NODES AND MULTIPLIES BY 3 AND SUM THE PRODUCTS. TO DO SO ONLY 

C CO-ORDINATES OF CORNER NODES ARE REQUIRED AS INPUTS. 

C 

       DO 2 JJ=1,3 

        WRITE(*,3) JJ 

 3      FORMAT('TPYE X AND Y COORDINATES OF NODE:-',I2) 

        READ*,X(JJ),Y(JJ) 

 2     CONTINUE 

       AREA=(X(2)-X(1))*(Y(3)-Y(1))-(X(3)-X(1))*(Y(2)-Y(1)) 

C 

C      THIS SECTION WILL TEST WHETHER THE FUNCTION IS DEFINED AT EACH 

C      CORNER NODES OR NOT AND ON THAT BASIS NEW CORNER NODES WILL BE 

C      CALCULATED USING THE DERIVED FORMULA 

         PRINT*,'TYPE THE NUMBER OF TRIALS TO EVALUATE THE INTEGRAL MT' 

    READ*,MT 

     M=1 

    XT1=X(1) 

        YT1=Y(1) 

   XT2=X(2) 

        YT2=Y(2) 

   XT3=X(3) 

        YT3=Y(3) 

       DO 5 MT1=1,MT 

 WRITE(3,*) 

C 

    IF(G(XT1,YT1).EQ.0.D0) THEN 

    XT1=((2.*M-1.)*X(1)+X(2))/DBLE(2.*M) 

    YT1=((2.*M-1.)*Y(1)+Y(3))/DBLE(2.*M) 
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   ELSE IF(G(XT2,YT2).EQ.0.D0) THEN 

    XT2=((2.*M-1.)*X(2)+X(1))/DBLE(2.*M) 

    YT2=((2.*M-1.)*Y(2)+Y(3))/DBLE(2.*M) 

   ELSE IF(G(XT3,YT3).EQ.0.D0) THEN 

    XT3=((2.*M-1.)*X(3)+X(2))/DBLE(2.*M) 

     YT3=((2.*M-1.)*Y(3)+Y(1))/DBLE(2.*M) 

       END IF 

 WRITE(3,*)XT1,YT1 

 WRITE(3,*)XT2,YT2 

 WRITE(3,*)XT3,YT3 

 

   SUM=F(XT1,YT1)+F(XT2,YT2)+F(XT3,YT3) 

c PRINT*,'SUM=',SUM 

c PRINT*,'CORNER NODE:' 

c PRINT*,'XT1=',XT1, 'XT2=', XT2, 'XT3=',XT3 

c PRINT*,'YT1=',YT1, 'YT2=', YT2, 'YT3=',YT3 

C   CALCULATION OF SIDE MID NODES 

    SUM1=0.D0 

    DO 7 I=1,M-1 

      XA(I)=((M-I)*X(1)+I*X(2))/DBLE(M) 

      YA(I)=((M-I)*Y(1)+I*Y(2))/DBLE(M) 

      XB(I)=((M-I)*X(2)+I*X(3))/DBLE(M) 

      YB(I)=((M-I)*Y(2)+I*Y(3))/DBLE(M) 

             XC(I)=((M-I)*X(1)+I*X(3))/DBLE(M) 

      YC(I)=((M-I)*Y(1)+I*Y(3))/DBLE(M) 

 WRITE(3,*)XA(I),YA(I) 

 WRITE(3,*)XA(I),YB(I) 

 WRITE(3,*)XC(I),YC(I) 

 

c    WRITE(*,*)I,'XA=',XA(I),I,'YA=',YA(I),I,'XB=',XB(I),I,'YB=', 

c 1   YB(I),I,'XC=',XC(I),I,'YC=',YC(I) 

C    WRITE(2,8)I,XA(I),I,YA(I),I,XB(I),I,YB(I),I,XC(I),I,YC(I) 

C 8       FORMAT(2X,'XA(',I2,')=',D18.10,2X,'YA(',I2,')=',D18.10,/, 

C     1   2X,'XB(',I2,')=',D18.10,2X,'YB(',I2,')=',D18.10,/, 

C     2   2X,'XC(',I2,')=',D18.10,2X,'YC(',I2,')=',D18.10) 

      AX=XA(I) 

      AY=YA(I) 

      BX=XB(I) 

      BY=YB(I) 

      CX=XC(I) 

      CY=YC(I) 

      SUM1=SUM1+3.D0*(F(AX,AY)+F(BX,BY)+F(CX,CY)) 

 7    CONTINUE 

 IF(M.GT.2) THEN 

C     WRITE(2,9) 

C 9       FORMAT(/,'CO-ORDINATES OF NODES INSIDE THE TRIANGLE ARE AS:',/) 

 SUM2=0.D0 

 DO 10 L=2,M-1 

 DO 11 J=1,L-1 

    XT(L,J)= ((L-J)*XA(L)+J*XC(L))/DBLE(L) 

    YT(L,J)= ((L-J)*YA(L)+J*YC(L))/DBLE(L) 

         TX=XT(L,J) 

    TY=YT(L,J) 

 WRITE(3,*)TX,TY 

C WRITE(2,12) L,L,J,TX,L,J,TY 

C12 FORMAT(2X,'ON THE LINE- ',I2,2X,'XT(',I2,I2,')=',D18.10,2X, 

C     1   'YT(',I2,I2,')=',D18.10) 

  SUM2=SUM2+6.D0*F(TX,TY) 

 11 CONTINUE 
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 10 CONTINUE 

 ELSE SUM2=0.D0 

 END IF 

 INTV=AREA*(SUM+SUM1+SUM2)/(6.D0*DBLE(M**2)) 

 ERR=DABS(INTV-EXACT) 

      WRITE(2,20) MT1,M,INTV,ERR 

 20   FORMAT(3X,'FOR TRIAL :',I3,2X,'M=',I3,2X,'INTV =',D18.10,2X, 

     1'ERR =',D18.10) 

       M=M+1 

 5 CONTINUE 

       PRINT*, 'YOUR DATA FILE NAME ', OUTFILE 

       STOP 

       END 

C================================****================================ 
 


