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Abstract  
A detailed discussion of a semi-analytical approach for studying the free vibration of simply supported circular 

cylindrical shells is presented. This method approximates simply supported boundary conditions using the beam 

function. A survey of the literature indicates that beam functions are often employed to estimate shell natural 

frequencies. There is no need to deal with laborious computations because this approach does not need 

boundary condition equations. Thus verifying the correctness of this approximation method is crucial. So this 

strategy is used to several  distinct shell theories like  Donnell-Mushtari, Love-Timoshenko, Amold-Warburton, 

Hougton-Johns, Flugge-Byme-Iur'ye, Reissner-Naghdi-Berry, Sanders, Vlasov, Kennard-Simplified, and Soedel 

are the ones that make up the list. The estimated approach performed well when compared to the experimental 

data. Finally, the effects of length, radius, and thickness were investigated on amplitude ratios. 
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I. Introduction 
Cylindrical shells, like beams and plates, are practical components of a variety of engineering 

structures, including pipelines and ducts, vehicle bodies, space shuttles, aircraft fuselages, ship hulls, 

submarines, and construction buildings. However, determining the dynamic characteristics of cylindrical shells 

is more challenging than those of beams and plates. This is due mostly to the more complicated equations of 

motion for cylindrical shells when coupled with boundary conditions. 

In 1973, Liessa[1] provided a detailed synthesis and discussion of shell theories, including natural 

frequencies and mode shape information. The Flugge theory [2] is founded on the Kirchhoff-Love hypothesis 

for thin elastic shells. This theory may be used to calculate strain-displacement relationships and curvature 

changes on the center surface of a cylindrical shell. The simplified Donnell's theory would be by ignoring a few 

terms in Flugge equations. Many studies, including Flugge, built on Love's pioneering work [3] and his first 

approximation theory. Livanov[4] solved the axisymmetrical vibrations of simply supported cylindrical shells 

issue by using displacement functions and using Love's assumption. More recently, Amabili and Paidoussis [5], 

Amabili [6], and Kurylov and Amabili [7] offered notable evaluations from a non-linear perspective. 

These theories are concerned not only with simply supported end conditions, but also with alternative 

limits, such as cantilever cylindrical shells [8], fixed free circular cylinder shells [9], clamped-clamped shells 

[10], and infinite length shells [11]. Rinchart and Wang [12] studied the vibration of simply supported 

cylindrical shells stiffened by discrete longitudinal stiffeners, employing Donnell's approximation theory, 

Flugge's more accurate theory, and Love's assumption for longitudinal wave numbers. In addition to the 

approximation method, additional ways to finding natural frequencies exist, such as the computer-based 

numerical method [13],[14] to reduce cumbersome processing work, and the wave propagation technique [15]. 

Most studies, including those described above, employ the beam function as an estimate for the simply 

supported boundary conditions in order to discover natural frequencies of vibration using the approximate 

technique. This method may also be used to do finite element analysis of cylindrical shells using the Hermitain 

polynomial of the beam function type [16]. More recently, Farshidianfar et al. [17] employed acoustic exitation 

to determine the natural frequency of long cylindrical shells. 

Shells are three-dimensional structures that may freely vibrate, unlike beams or plates, which are 

typically one- or two-dimensional. This has resulted in complex shell movements at resonance frequencies. 

Therefore, modal identification of cylindrical shells with their amplitudes has always been of tremendous 

relevance, even apart from their frequency behavior. Applications such as sound radiation, acoustics, and 

engineering design heavily rely on the amplitude ratios of cylindrical shells. The amplitude ratios of the mode 

forms have been determined in earlier research [18], although these investigations are not comprehensive. 
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The current work proposes a semi-analytical method to examine the free vibration of cylindrical shells 

with simple supports.As previously mentioned, beam transformations with similar boundary conditions are 

employed in conventional analysis to approximate wave numbers in the axial direction. This approach is 

regarded as being approximative.The approximation approach is used to get the natural frequencies based on 10 

distinct shell theories.( Donnell-Mushtari, Love-Timoshenko, Amold-Warburton, Houghton-Johns, Flugge-

Byme-Lur’ye, Reissner-Naghdi-Berry, Sanders, Vlasov, Kennard-Simplified and Soedel) A comparison of the 

results with the experimental data demonstrates a fair degree of agreement. Lastly, an analysis was done on the 

behavior of the circular shells at different aspect and thickness ratios. It was noted that the predominate motion 

of the shell might shift to radial, tangential, or longitudinal by changing these parameters. 

 

II. Theoretical Analysis 
The cylindrical shell that is being studied has the following constants: density ( , Poisson's ratio 

( , axial length (L), mean radius(R), and modulus of elasticity (E). As seen in Figure 1, the corresponding 

displacements in the axial, circumferential, and radial directions are indicated by the symbols 

𝑢(𝑥, 𝜃, 𝑡), 𝑣(𝑥, 𝜃, 𝑡), 𝑎𝑛𝑑 𝑤(𝑥, 𝜃, 𝑡) 

The cylindrical shell under consideration is with constant  thickness h, mean radius R, axial length L, 

Poisson's ratio , density and Young's modulus of elasticity E . Here are the respective displacements in the 

axial, circumferential and radial directions are denoted by 𝑢(𝑥, 𝜃, 𝑡), 𝑣(𝑥, 𝜃, 𝑡), 𝑎𝑛𝑑 𝑤(𝑥, 𝜃, 𝑡) as shown in 

Figure l. 

 

 
Figure 1. Coordinate system and dimensions of Circular cylindrical shell. 

 

To investigate free vibration of a cylindrical shell, the equations of motion can be stated in matrix form 

as follows: 

[

𝐷11 𝐷12 𝐷13

𝐷21 𝐷22 𝐷23

𝐷31 𝐷32 𝐷33

] {

𝑢(𝑥, 𝜃, 𝑡)

𝑣(𝑥, 𝜃, 𝑡)
𝑤(𝑥, 𝜃, 𝑡)

} = {
0
0
0
}                                                    (1) 

 

where Dij (i,j= l, 2, 3) are differential operators with regard to 𝑥, 𝜃, 𝑡 

Different systems of equations are utilized to simulate the vibration behavior of a circular cylindrical 

shell. This work analyzed with several shell theories like  Donnell-Mushtari, Love-Timoshenko, Amold-

Warburton, Hougton-Johns, Flugge-Byme-Iur'ye, Reissner-Naghdi-Berry, Sanders, Vlasov, Kennard-

Simplified, and Soedel, to determine natural frequencies for different boundaries. 

 

Assuming a synchronous motion, the first attempt at solving (1) is as follows: 

{

𝑢(𝑥, 𝜃, 𝑡) = 𝑈(𝑥, 𝜃) 𝑓(𝑡)

𝑣(𝑥, 𝜃, 𝑡) = 𝑉(𝑥, 𝜃) 𝑓(𝑡)

   𝑤(𝑥, 𝜃, 𝑡) = 𝑊(𝑥, 𝜃) 𝑓(𝑡)

                                                                         (2) 

 

where f(t) is the scalar model coordinate corresponding to the mode shapes 𝑈(𝑥, 𝜃), 𝑉(𝑥, 𝜃) ,𝑊(𝑥, 𝜃) 

The following stage involves separating the spatial dependency of the modal shape between the 

longitudinally and circumferential directions using the separation of variables approach. 
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Therefore, the shell’s axial, tangential, and radial displacements differ in accordance with: 

{

𝑢(𝑥, 𝜃, 𝑡) = 𝐴𝑒𝜆𝑚𝑥 sin(𝑛𝜃) cos (𝜔𝑡)

      𝑣(𝑥, 𝜃, 𝑡) = 𝐵𝑒𝜆𝑚𝑥 cos(𝑛𝜃) cos(𝜔𝑡)       

𝑤(𝑥, 𝜃, 𝑡) = 𝐶𝑒𝜆𝑚𝑥 sin(𝑛𝜃) cos (𝜔𝑡)

                                            (3) 

where n and 𝜆𝑚 represents the circumferential wave parameter and the axial wave number, 

respectively. x, t typically represents a spatial variable, time respectively. ω is circular frequency of natural 

vibration of shell and A, B, and C are the undetermined constants. 

 

Any of the shell theories may be used to substitute (3) in (1) to create a set of homogeneous equations 

with the following matrix form. 

[

𝐶11 𝐶12  𝐶13

𝐶21 𝐶22 𝐶23

𝐶31 𝐶32 𝐶33

] {
𝐴
𝐵
𝐶
} = {

0
0
0
}                                                                  (4) 

where [𝐶𝑖,𝑗]  (i,j=1,2,3) are coefficients of matrix with terms of  n, 𝜆𝑚 , 𝜐 ,k , and Ω2 

The non dimensional frequency parameter( Ω2) is defined as follows 

Ω2 =
(1 − υ2)ρω2R2

E
                                                                           (5) 

The non dimensional thickness parameter (k) is defined as follows 

k =
h2

12R2
                                                                                              (6) 

 

The coefficient matrix[𝐶𝑖,𝑗] for several shell theories is obtained as follows 

Donnell-Mushtari Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 +

(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2 𝑛

−𝜐𝜆𝑚 𝑛 Ω2 − [1 + k(𝜆𝑚
2 − 𝑛2)2]]

 
 
 
 
 

                                 (7) 

 

Love-Timmoshenko Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 + (1 + 2k)

(1 − 𝜐)

2
𝜆𝑚

2 − (1 + 𝑘)𝑛2 𝑛 + 𝑛𝑘(𝑛2 − 𝜆𝑚
2
)

−𝜐𝜆𝑚 𝑛 Ω2 − [1 + k(𝜆𝑚
2 − 𝑛2)2]]

 
 
 
 
 

 (8) 

Amold-Warburton Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 + (1 + 4k)

(1 − 𝜐)

2
𝜆𝑚

2 − (1 + 𝑘)𝑛2 𝑛𝑘[𝑛2 − (2 − 𝜐)𝜆𝑚
2]

−𝜐𝜆𝑚 𝑛𝑘[𝑛2 − (2 − 𝜐)𝜆𝑚
2] Ω2 − [1 + k(𝜆𝑚

2 − 𝑛2)2]]
 
 
 
 
 

     (9) 

 

Houghton-Johns Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 +

(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2 𝑛𝑘[𝑛2 − (2 − 𝜐)𝜆𝑚
2]

−𝜐𝜆𝑚 𝑛𝑘[𝑛2 − (2 − 𝜐)𝜆𝑚
2] Ω2 − [1 + k(𝜆𝑚

2 − 𝑛2)2]]
 
 
 
 
 

                                  (10) 

 

Flugge-Byrme-Lur’ye Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 − (1 + 𝑘)
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚 − 𝑘𝜆𝑚[𝜆𝑚

2 + (1 − 𝜐)𝑛2]

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 − 𝑛2 + (1 + 3k)

(1 − 𝜐)

2
𝜆𝑚

2 𝑛 [1 −
3 − 𝜐

2
𝑘𝜆𝑚

2]

𝜐𝜆𝑚 + 𝑘𝜆𝑚[𝜆𝑚
2 + (1 − 𝜐)𝑛2] 𝑛 [1 −

3 − 𝜐

2
𝑘𝜆𝑚

2] Ω2(1 + k) − k[(𝜆𝑚
2 − 𝑛2)2 − 2n2]]

 
 
 
 
 

(11) 



A Comparison Of Several Shell Theories For Free Vibration Analysis Of Circular Cylinders. 

DOI: 10.9790/1684-2103032026                www.iosrjournals.org                                             23 | Page 

 

Reissner-Naghdi-Berry Shell Theory: 

[
 
 
 
 Ω

2 + 𝜆𝑚
2 −

(1−𝜐)

2
𝑛2 −

(1+𝜐)

2
𝑛𝜆𝑚 𝜐𝜆𝑚

(1+𝜐)

2
𝑛𝜆𝑚 Ω2 + (1 + k) (

(1−𝜐)

2
𝜆𝑚

2 − 𝑛2) 𝑛[1 + 𝑘(𝑛2 − 𝜆𝑚
2)]

−𝜐𝜆𝑚 𝑛[1 + 𝑘(𝑛2 − 𝜆𝑚
2)] Ω2 − [1 + k(𝜆𝑚

2 − 𝑛2)]]
 
 
 
 

             (12) 

 

Sanders Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 − (1 +
𝑘

4
)
(1 − 𝜐)

2
𝑛2 −𝑛𝜆𝑚 [

1 + 𝜐

2
−

3𝑘(1 − 𝜐

8
] 𝜆𝑚 (𝜐 −

1 − 𝜐

2
𝑘𝑛2)

𝑛𝜆𝑚 [
1 + 𝜐

2
−

3𝑘(1 − 𝜐

8
] Ω2 − (1 + k)𝑛2 + (1 +

9k

4
)
(1 − 𝜐)

2
𝜆𝑚

2 𝑛 [1 + 𝑘 (𝑛2 −
3 − 𝜐

2
𝜆𝑚

2)]

𝜆𝑚 (
1 − 𝜐

2
𝑘𝑛2 − 𝜐) 𝑛 [1 + 𝑘 (𝑛2 −

3 − 𝜐

2
𝜆𝑚

2)] Ω2 − [1 + k(𝜆𝑚
2 − 𝑛2)2] ]

 
 
 
 
 

         (13) 

Vlassov Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −𝑛𝜆𝑚 [

1 + 𝜐

2
] 𝜆𝑚 [𝜐 − 𝑘 (

1 − 𝜐

2
𝑛2 + 𝜆𝑚

2)]

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 +

(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2 𝑛 (1 −
3 − 𝜐

2
𝑘𝜆𝑚

2)

𝜆𝑚 [𝑘 (
1 − 𝜐

2
𝑛2 + 𝜆𝑚

2) − 𝜐] 𝑛 (1 −
3 − 𝜐

2
𝑘𝜆𝑚

2) Ω2 − (1 + k) − k[(𝜆𝑚
2 − 𝑛2)2 − 2n2]]

 
 
 
 
 

                        (14) 

Kennard-Simplified Shell Theory: 

[
 
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −[

1 + 𝜐

2
] 𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 +

(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2 𝑛 [1 +
3𝑘𝜐

2(1 − 𝜐)
(1 − 𝑛2)]

−𝜐𝜆𝑚 0 Ω2 − (1 +
2 + 𝜐

2(1 − 𝜐)
) − k [(𝜆𝑚

2 − 𝑛2)2 −
4 − 𝜐

2(1 − 𝜐)
n2]

]
 
 
 
 
 
 

   (15) 

Soedel Shell Theory: 

[
 
 
 
 
 Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −[

1 + 𝜐

2
] 𝑛𝜆𝑚 𝜐𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 + (1 + k)(

1 − 𝜐

2
𝜆𝑚

2 − 𝑛2) 𝑛[1 + 𝑘(𝑛2 − 𝜆𝑚
2)]

−𝜐𝜆𝑚 𝑛[1 + 𝑘(𝑛2 − 𝜆𝑚
2)] Ω2 − (1 + k (−𝜆𝑚

2 − 𝑛2)
2
)]
 
 
 
 
 

                                      (16) 

 

 

The coefficient matrix's determinant in equation (4) for a nontrivial solution must be zero 

i.e.,                 det|𝐶𝑖𝑗| = 0 ; 𝑖, 𝑗 = 1,2,3                                                                                           (17) 

 

Expanding (17) yields the two Eigen value problems as follows 

(i)There are one or more appropriate values for ω such that (17) vanishes for a given value of 𝜆𝑚. 

(ii)There are one or more appropriate values for 𝜆𝑚such that (17 vanishes for a given value of ω. 

 

A cubic equation in terms of the non-dimensional frequency parameter Ω2 may be obtained by solving 

equation (17). 

The natural frequencies of the cylindrical shell are therefore three positive roots and three negative 

roots for fixed values of n and 𝜆𝑚 .This allows the shell to be classified as primarily axial, circumferential, and 

radial. The lowest frequency is typically linked with motion that is largely radial (or flexural). 

 

III. Beam Function Method 
In general, it is impossible to solve in closed form the roots of the characteristic equation of (17) 

for 𝜆𝑚. Because of this, researchers have a tendency to employ approximation approaches. For closed circular 

cylindrical shells, estimated displacements and natural frequencies may be obtained using beam functions. With 

the same boundary conditions, this approach integrates the flexural vibration of a cylindrical shell with a 

transversely vibrating beam. For a simply supported shell at both ends, the approximation technique defines the 

nature of the axial mode as 
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𝜆𝑚 = 𝑚𝜋
𝑅

𝐿
√−1                 (18) 

 

By substituting (18) into (17), the only unknown in the characteristic equation is the frequency 

parameter Ω2 for a fixed combination of m and n. 

 

IV. Result And Discussion 
Because the beam function approach is an estimate for obtaining natural frequencies for thin circular 

cylindrical shells, it is critical to ensure its correctness. As a result, the natural frequency for simply supported 

boundary conditions was determined using the beam function in conjunction with above standard cylindrical 

shell theories. 

Table 1 presents a comparison between the approximation technique findings derived from the ten 

theories and an experiment conducted for a simply supported circular cylindrical shell by Farshidianfar et al. 

[17]. The aluminum shell under investigation in Table 1 has the following material properties: υ = 0 33, ρ = 

2700 Kg/m3, and E = 68.2 GPa. The shell's dimensions considered are h=0.00147 m, R=0.0762 m  and 

L=1.7272 m 
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1 1 

138.

4 145.78 138.98 138.89 138.81 131.64 138.93 138.89 138.76 139.15 138.41 

1 2 

190.

3 226.92 172.95 172.75 172.73 163.56 172.94 172.75 172.84 192.00 170.20 

1 3 

502.

2 530.20 471.46 471.37 471.39 467.68 471.46 471.37 471.44 492.83 468.92 

1 4 

884.

4 962.42 902.29 902.24 902.28 900.23 902.29 902.24 902.31 924.35 899.83 

2 1 

464.

7 520.01 518.07 517.97 517.91 515.94 518.02 517.97 517.85 518.25 517.47 

2 2 

310.

5 286.06 244.82 244.26 244.20 237.69 244.78 244.27 244.50 259.46 237.00 

2 3 477 539.51 481.45 481.10 481.11 477.45 481.44 481.11 481.33 502.96 471.44 

3 2 
496.

6 449.85 449.85 449.85 423.43 449.85 424.15 423.51 423.77 433.61 414.15 

3 3 

558.

9 569.82 514.49 513.75 513.75 510.26 514.47 513.77 514.21 535.51 493.21 

4 2 
679.

8 704.8 688.28 687.48 687.48 684.97 688.23 687.54 687.80 694.77 677.37 

4 3 

638.

3 636.53 586.68 585.53 585.53 582.39 586.64 585.57 586.21 606.20 553.30 

5 3 782 748.88 706.10 704.60 704.65 701.9 706.05 704.69 705.4 723.44 662.76 

Table 1: Comparison of Approximation Analysis results with Experimental data 

 

The errors of all theories with respect to the experiment are also shown in Table 2. 

A relative error is defined as follows: 

 

𝐸𝑟𝑟𝑜𝑟𝜔 =
𝜔𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙−𝜔𝑎𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙

𝜔𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡𝑎𝑙
 × 100%       (19) 
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1 1 -5.33 -0.42 -0.35 -0.30 4.88 -0.38 -0.35 -0.26 -0.54 -0.01 

1 2 -19.24 9.12 9.22 9.23 14.05 9.12 9.22 9.17 -0.89 10.56 

1 3 -5.58 6.12 6.14 6.14 6.87 6.12 6.14 6.13 1.87 6.63 

1 4 -8.82 -2.02 -2.02 -2.02 -1.79 -2.02 -2.02 -2.03 -4.52 -1.74 

2 1 -11.90 -11.48 -11.46 -11.45 -11.03 -11.47 -11.46 -11.44 -11.52 -11.36 

2 2 7.87 21.15 21.33 21.35 23.45 21.17 21.33 21.26 16.44 23.67 

2 3 -13.10 -0.93 -0.86 -0.86 -0.09 -0.93 -0.86 -0.91 -5.44 1.17 

3 2 9.41 9.41 9.41 14.73 9.41 14.59 14.72 14.67 12.68 16.60 
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3 3 -1.95 7.95 8.08 8.08 8.70 7.95 8.07 8.00 4.19 11.75 

4 2 -3.68 -1.25 -1.13 -1.13 -0.76 -1.24 -1.14 -1.18 -2.20 0.36 

4 3 0.28 8.09 8.27 8.27 8.76 8.09 8.26 8.16 5.03 13.32 

5 3 4.24 9.71 9.90 9.89 10.24 9.71 9.89 9.80 7.49 15.25 

Table2: Errors between approximation analyses with Experimental data 

 

It is observed that, the beam function method yields close results compared to the experiment as well. 

It is also concluded that some theories (Love-Timoshenko, Arnold-Warburton, Flugge-Byme-Lur’ye , Reissner-

Naghdi-Berry, Sanders, Vlasov and Soedel reveal same results.Kenanrd-Simplified,Reissner-Nigdhi-Berry and 

Soedell are more accurate than other theories and Donnell_Mushtari and Houghton-Johns theory are not precise 

compared to other theories 

The mode shapes or eigen functions of free vibrations are found by returning to the homogeneous set 

of equations which yielded the characteristic equation. In case of Donnel-Musthari theory the set is given by 

eqtn(7) . Any two of the equations are chosen and the third is discarded. The two remaining equations can be 

solved for the ratios of amplitudes .The most convenient ratios to choose being A/C and B/C. The eqtn(7) can 

be rewritten as 

 

[
Ω2 + 𝜆𝑚

2 −
(1 − 𝜐)

2
𝑛2 −

(1 + 𝜐)

2
𝑛𝜆𝑚

(1 + 𝜐)

2
𝑛𝜆𝑚 Ω2 +

(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2

] [
𝐴/𝐶
𝐵/𝐶

] = [
𝜐𝜆𝑚

𝑛
]           (20) 

By solving eqtn(20) ,the values of amplitude ratios A/C and B/C can be written as inverting them as follows 

𝐴

𝐶
=

(𝜐𝜆𝑚) ∗ (Ω2 +
(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2) − (−
(1 + 𝜐)

2
𝑛𝜆𝑚) ∗ 𝑛

(   Ω2 + 𝜆𝑚
2 −

(1 − 𝜐)
2

𝑛2) ∗ (Ω2 +
(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2) − (
(1 + 𝜐)

2
𝑛𝜆𝑚) ∗ (−

(1 + 𝜐)
2

𝑛𝜆𝑚)
 

 

𝐵

𝐶
=

(𝑛) ∗ (Ω2 +
(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2) − (
(1 + 𝜐)

2
𝑛𝜆𝑚) ∗ 𝑛

(   Ω2 + 𝜆𝑚
2 −

(1 − 𝜐)
2

𝑛2) ∗ (Ω2 +
(1 − 𝜐)

2
𝜆𝑚

2 − 𝑛2) − (
(1 + 𝜐)

2
𝑛𝜆𝑚) ∗ (−

(1 + 𝜐)
2

𝑛𝜆𝑚)
 

 

As indicated above, the lowest of three natural frequencies for each 𝜆𝑚 and n combinations usually 

A/C, B/C ratios less than unity indicating primarily radial motion. 

 

V. Conclusions 
Ten distinct thin shell theories have been used to study the free vibration of circular cylindrical shells 

with simply supported boundary conditions: Donnell-Mushtari, Love-Timoshenko, Amold- Warbunon, 

Houghton-Johns, Flugge-Byme-Lur'ye, Reissner-Naghdi-Beny, Sanders, Vlasov, Kennard-Simplified, and 

Soedel. The work focuses on utilizing the beam function as an approximation for boundary conditions to 

determine the natural frequencies of a shell. The hypotheses were then compared to the results to ensure their 

correctness, and there was good agreement. Furthermore, the approximation technique based on the Soedel and 

Kennard-Simplified theories performed better than other theories. 
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