A Study To Assess The Effectiveness Of Planned Teaching Programme Regarding Congenital Anomalies Among Newly Married Couple In Selected Area Of Kanpur

Prof. Shubha, Mansi Tiwari, Pratibha Pal, Pooja Devi, Anamika

Date of Submission: 13-10-2023	Date of Acceptance: 23-10-2023

I. INTRODUCTION

According to the World Health Organization (WHO) document of 1972, the term congenital malformations should be confined to structural defects at birth.[1]

Congenital anomalies account for 8–15% of perinatal deaths and 13–16% of neonatal deaths in India. The proportion of perinatal deaths due to congenital malformations is increasing as a result of reduction of mortality due to other causes owing to the improvement in perinatal and neonatal care. In the coming decades, this is going to be a leading cause of morbidity and mortality in centers providing good neonatal care. The present study was carried out with the aim to determine the overall rate of congenital malformations, incidence in live births and stillbirths, as well as incidence affecting various organ systems, at a rural medical college hospital in Maharashtra and compare them to previous studies.

II. BACKGROUND OF THE STUDY

Knowledge about the prevalence of congenital anomalies is useful to obtain baseline rates, documenting changes over time, and identifying clues to the etiology of conditions. This knowledge is also helpful to plan and assess antenatal screening for congenital anomalies, especially for high-risk populations. This study, therefore, aimed to determine the pattern of congenital anomalies in that hospital and assess the association between congenital anomalies and maternal characteristics.^[2]

III. NEED FOR THE STUDY

Congenital anomalies vary substantially in severity. Some congenital anomalies are associated with spontaneous abortion, stillbirth or death in the early postnatal period. The first month of life is the most vulnerable period for child survival, with 2.4 million newborn dying in 2020.birth defect are a leading cause of infant mortality in the UNITED STATES, accounting for 20.6% of infant death in 2017. About 3 - 4% of babies are born with some type of birth defect.

According to joint WORLD HEALTH ORGANIZATION and MOD, birth defects account for 7% of all neonatal mortality and 3.3 million under five deaths. In India birth defects prevalence varies from 61 to 69.9/1000 live births.^[3]

PROBLEM STATEMENT

"A study to assess the effectiveness of planned teaching programme regarding congenital anomalies among newly married couple in selected area of Kanpur".

OBJECTIVE

- To assess the knowledge regarding congenital anomalies in newly married couple.
- To assess the pretest knowledge score regarding congenital anomalies among newly married couples.
- To assess the post test knowledge score regarding congenital anomalies.
- To assess the effectiveness of the planned teaching programme among newly married couple.
- To find out the association of knowledge between pre test and post test score regarding congenital anomalies with selected demographic variables.

ASSUMPTION-

• A planned teaching programme will help in enhancing the knowledge of newly married couple, which in turn will improve the knowledge related to congenital anomalies.

• Life style changes and clinical checkup along with the newly married couple reduce the risk of the congenital anomalies.

HYPOTHESIS-

H1- There will be a significant difference between knowledge score of newly married couple regarding congenital anomalies before and after administration of planned teaching programme.

H2- There will be significantly association between pre –test knowledge score with the demographic variables at 0.05 level of significance.

Research approach and design-One group pre test and post test design.

Dependent variables- knowledge of newly married couple regarding congenital anomalies.

Research approach: Quantitative research approach

Research setting : Area of kalyanpur, Kanpur.

Sample and sampling technique – Probability simple random sampling . The sample size is 30.

Data collection procedure

The main sample was selected through quasi-experimental sampling technique. Firstly, consent was taken from the samples. After that pertest was taken from the sample based on structured teaching programme was given to the samples for 30 mins. After that post-test was taken from the sample and the samples were analysed by chi square and t test formulae.

Inclusion criteria -

- Newly married couples of Kalyanpur Kanpur.
- Couples who have been remarried but have not yet given birth to their first child.
- Those who are willing to participate .

Exclusion criteria-

- Re married couples who have their first child.
- Those who are not willing to participate.

Description and interpretation of tool-

Tool 1:-

Section A:- Demographic variables

Section B- Knowledge assessment on congenital anomalies.

Tool 2:-Self structured question related to congenital anomalies.

IV. RESULTS

Frequency and percentage distribution of newly married couple according todemographic variable.

Sr.n.	Socio demographic variables	Frequency	Percentage
1-	Age		
	18-25 years	18	60%
	26-30 years	12	40%
	31-35 years		
	More than 35 years		

Sr.n.	Socio demogr	Socio demographic variable		Frequency	Percentage	
2-	Type of marri	age				
	Arrange	marriage/	love	21	70%	
	marriage					
	Consanguinity	marriage		8	26.7%	
	Other			1	3.3%	

Sr.n.	Socio demographic variable	Frequency	Percentage
3-	Marriage duration		
	1mo-6mo	23	76.7%
	1 year	6	20%
	2-3 years	1	3.3%
	More than 3 years		

.n.	Socio demographic variable	Frequency	Percentage
	Type of family		
	Nuclear family	10	33.3%
	Joint family	20	66.7%
Sr.n.	Socio demographic variable	Frequency	Percentage
5-	Educational status		
	Primary	9	30%
	High school	11	36.7%
	Intermediate	8	26.7%
	Graduation	2	6.7%
	Graduation	Ĩ	0.170
Sr.n.	Socio demographic variable	Frequency	Percentage
6-	Religion		
	Hindu	27	90%
	Muslim	3	10%
	Christian		
	Other		
Sr.n.	Socio demographic variable	Frequency	Percentage
7-	Residence		
	Urban	23	76.7%
	Rural	7	23.3%
Sr.n.	Socio demographic variable	Frequency	Percentage
8-	Previous source of knowledge		
-	Newspaper	8	26.7%
	T.V.	6	20%
	Radio	5	16.7%
	None	11	36.7%
L			
Sr.n.	Socio demographic variable	Frequency	Percentage
)_	Family income		
	Less 5000/month	3	10%
	6000-10000/month	13	43.3%
	11000-20000/month	13	43.3%
	More than 20000/month	1	3.3%
r.n.	Socio demographic variable	Frequency	Percentage
0-	History of presence of any disease		
	UTI	7	23.3%
	STD	5	16.7%
	OTHERS	5	16.7%
	NONE	13	43.3%

ASSESSMENT THE LEVEL OF KNOWLEDGE AMONG NEWLY MARRIEDCOUPLE RELATED TO CONGENITAL ANOMALIES IN PRE TEST.

S./NO.	Knowledge	Frequency	Percentage	Mean%	S.D.
1.	Good	00			
2.	Average	04	13.3%	48.07%	2.67

3.	Poor	26	86.7%	

Table no.2 shows that out of 30 sample 04 (13.3%) have average knowledge ,26(86.7\%) have poor knowledge in pre test regarding congenital anomalies

Assessment of	f post	test	knowledge	of	newly	marriedcongenital anomalies

S./NO.	Knowledge	Frequency	Percentage	Mean%	S.D.	
1.	Good	16	53.3%			
2.	Average	12	40%	77.68%	2.69	
3.	Poor	2	6.7%			

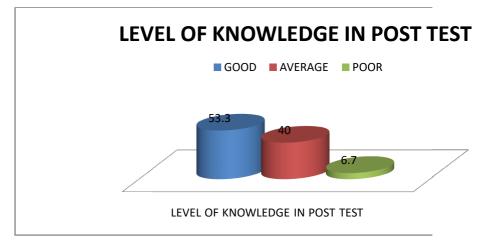


Table no.3 shows that out of 30 sample 16 (53.3%) have good knowledge, 12 (40%) have average knowledge ,2(6.7%) have poor knowledge in pre testanomalies.

Effectiveness of the pre and post test knowledge score on the congenital anomalies among newly married couples in selected area of Kanpur

Level	of Mean percentage	S.D.	Pairedt- test	df	Tablevalue
percentage					
Pre test	48.07%	2.67	12.403	29	1.699
Post test	77.68%	2.69			

Table-4 shows that, the comparison pre test and post test knowledge score knowledge congenital anomalies the mean percentage 48.07% of pre test and the mean percentage 77.68% of post test in the compare of pre test and post test knowledge score had significance difference with t-value (12.403) at 1.699 level of significance.

The result revealed that it was concluded that there was significance difference between pre test and post test knowledge score regarding congenital anomalies among newly married couples. Hence the research hypothesis was accepted.

Association of level of knowledge with their selected demographic variables by using chi square test. Table-5

	61 11 141	4	1 1.	
Association of level	of knowledge with	i their selected	demographic	variable age.

Sr.n.	Demographic variable.	Frequency	Chi square	df	Level of Significant
1.	Age				
	18-25 years	18	9.931	9	.356
	26-30 years	12			
	31-35 years				
	More than 35 years				

 X^{2} (9) at 0.05 = 16.919 NS= Not significant.

Table-5 shows that, there was no significance association between pre test knowledge score regarding congenital anomalies ($X^2(9)=9.931$, p> 0.05 level of significance.

iau	ULL UL	level of knowledge with	i uleli seleci	eu uemograp	inc variab	ie type offiai flage.
S	r.	Demographic variable	Frequency	Chi square	df	Level of Significant
Ν	ſ.					
2.		Type of marriage				
		Arrange marriage/love	21	13.074	18	.787
		marriage.				
		Consanguinity	8			
		marriage.	1			
		Other.				
		^				

Hence, the hypothesis was rejected. Association of level of knowledge with their selected demographic variable type of marriage.

X² (18) at 0.05 = 28.869 NS= Not significant.

Table shows that, there was no significance association between pre test knowledgescore regarding congenital anomalies (X^2 (18)= 13.074, p> 0.05 level of significance. Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variable marriageduration.

Table-7								
Sr. N.	Demographic variable	Frequency	Chi square	df	Level of Significant			
3.	Marriage duration							
	1mo-6months	23	22.558	18	.208			
	1 year	6						
	2-3 years	1						
	More than 3 years							

X² (18) at 0.05 = 28.869 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies (X^2 (2)= 22.558, p> 0.05 level of significance. Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variable type offamily.

	ladie- 8						
Sr.	Demographic variable	Frequency	Chi square	df	Level of		
N.			-		Significant		
4.	Type of family						
	Nuclear family	10	9.225	9	.417		
	Joint family	20					
	TT 1 (0)		040 MG M				

 $X^{2}(9)$ at 0.05 = 16.919 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies (X^2 (9)= 9.225, p> 0.05 level of significance.

Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variableeducational status.

	Table-9								
Sr.	Demographic variable	Frequency	Chi square	df	Level	of			
N.					Significant				
5.	Educational status								
	Primary High sch	100l9	29.819	27	.322				
	Intermediate	11							
	Graduation	8							
		2							

X² (27) at 0.05 = 40.113 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge score regarding congenital anomalies ($X^2(27)=29.819$, p> 0.05 level of significance.

Association of level of knowledge with their selected demographic variable religion.

	Tuble 10							
ſ	Sr.	Demographic variable	Frequency	Chi square	df	Level of		
	N.					Significant		
ſ	6.	Religion						
ſ		Hindu Muslim Christian	27	13.704	9	.133		
		Other	3					

 X^{2} (9) at 0.05 = 16.919 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies ($X^2(9)=13.704$, p> 0.05 level of significance.

Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variableresidence.

Table-11							
Sr.	Demographic variable	Frequency	Chi square	df	Level of Significant		
N.			_				
7.	Residence						
	Urban	23	6.801	9	.658		
	Rural	7					

 X^{2} (9) at 0.05 = 16.919 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies ($X^2(9)=6.801$, p> 0.05 level of significance.

Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variable previous sources of knowledge

_	Table-12							
	Sr.	Demographic variable	Frequency	Chi square	df	Level of Significant		
	N.					-		
	8.	Previous source of						
		knowledge						
		News paperT.V.	8	23.786	27	.642		
		Radio	6					
		None	5					
			11					

X 2 (27) at 0.05 = 40.113 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies (X^2 (27)= 23.786, p> 0.05 level of significance.

Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variable familyincome.

Table-15											
Sr.	Demographic variable	Frequency	Chi square	df	Level of						
N.			_		Significant						
9.	Family income										
	>5,000/m	3	16.923	27	.933						
	6,000-10,000/m	13									
	11,000-20000/m	13									
	<20,000/m	1									
-	TT 2 (07)	0.05 10.114									

X² (27) at 0.05 = 40.113 NS= Not significant.

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies (X^2 (27)= 16.923, p> 0.05 level of significance. Hence, the hypothesis was rejected.

Association of level of knowledge with their selected demographic variablehistory of presence of any disease.

Table-14							
Sr.	Demographic variable	Frequency	Chi square	df	Level of Significant		
N.			_				
10.	History of presence of						

	any disease.						
	UTI STD	7	29.998	27	.314		
	Other	5					
	None	5					
		13					
X ² (27) at $0.05 = 40.113$ NS= Not significant.							

Table shows that, there was no significance association between pre test knowledge scoreregarding congenital anomalies (X^2 (27)= 29.998, p> 0.05 level of significance. Hence, the hypothesis was rejected

V. CONCLUSION

It is concluded that the planned teaching program on providing knowledge regarding congenital anomalies is effective strategy. All of the selected demographic variables do not shows a major role in pre test knowledge score. Hence on the basis of above findinging it concluded undoubtly that the written material preparation by the investigation in the form of planned teaching program help the subject to improvement their knowledge congenital anomalies.

VI. SUMMARY

The review of literature provide information, which enable the investigation to the study extent of selected problem to develop conceptual frame work, data analysis and integration. The conceptual frame work for this study is based on CSJMU KANPUR. This study was conducted in kalyanpur Kanpur. The study was one group pre test and post test design simple stratified technique was used. The planned knowledge questionnaire was develop and use for data collectionThe mainly study was conducted in October 2022 with sample size 30. The test was done to know the level knowledge of newly married couple. The obtained data was analyzed in term of objective and hypothesis using descriptive and inferential statistics. Chi-square test revealed that was no significance association between the pre test and post test knowledge score of newly married couples and their demographic variable

VII. RECOMMENDATION

The study needs to be conducted in various method which can be used to improved the knowledge of newly married couple regarding congenital anomalies in order to improved there knowledge and maintain baby health .

BIBLIOGRAPHY

- [1]. Amar Taksande, Krishna Vilhekar, Pushpa Chaturvedi, And Manish Jain Genet. Congenital Malformations At Birth In Central India: A Rural Medical College Hospital Based Data. 2010 Sep-Dec16(3):159–163.
- Doi: 10.4103/09716866.73412https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/PMC3009428/
- [2]. Sozan K. Ameen,¹ Shahla Kareem Alalaf,² And Nazar P. Shabila³Pattern Of Congenital Anomalies At Birth And Their Correlations With Maternal Characteristics In The Maternity Teaching Hospital, Erbil City, Iraq, BMC Pregnancy Childbirth. 2018; 18: 501.Published Online2018dec18. Doi: 10.1186/S12884-018-2141-2https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/PMC629965/
- [3]. Amar Taksande, Krishna Vilhekar, Pushpa Chaturvedi, And Manish Jainindian J Hum Genet.Congenital Malformations At Birth In Central India: A Rural Medical College Hospitalbased, 2010Sep-Dec;16(3):159–163.Doi: 10.4103/0971-6866.73412 Https://Www.Ncbi.Nlm.Nih.Gov/Pmc/Articles/PMC3009428/
- [4]. Mohd Murtaza, Md Niamat Ali, Mahrukh Hameed Zargan. Congenital Anomalies : A Scenario Of Critical Concern In DevelopingCountry Like India. Cytogenetic And Molecular Biology Research Laboratory Centre OfResearch For Development University Of Kashmir Srinagar – 190006, J&K India.Https://Www.Researchgate.Net
- [5]. Prajkta Bhide, Pooja Gund, And Anita Kar*Prevalence Of Congenital Nomalies In Anindianmaternal Cohort:
- Healthcare, Prevention, And Surveillance Implications, Published Online 2016 Nov10. Doi: 10.1371/Journal.Pone.0166408, PMID: 27832123 Https://Www.Ncbi.Nlm.Nih.Gov
- [6]. Amar Taksande, Krishna Vilhekar, Pushpa Chaturvedi, And Manish Jainindian J Hum Genet. Congenital Malformations At Birth In Central India: A Rural Medical College Hospital Based Data. 2010 Sep-Dec; 16(3):159163.Https://Www.Ncbi.Nlm.Nih