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Abstract: Cyclic Redundancy Check  is an established technique for detecting errors on serial data 

communication links and in mass storage devices. A frame check sequence is appended to the 

message for transmission error detection in Many (high-speed) serial data  communication protocols. 

The common hardware solution for CRC calculation is the linear feedback shift register (LFSR), 

consisting a few Flip Flops and Logic Gates. CRC is the preferred and most efficient method used for 
detecting bit errors produced from medium related noise. Data storage is another area where CRC 

error detection is becoming increasingly important. CRC checks to be executed at high speed as well 

as parallel processing. The ability of CRC implemented in hardware to be reconfigurable to handle 
new Generator polynomials will offer a key advantage in this fast developing area. The 

reconfigurable CRC circuit that has been implemented can quickly switch between any polynomial 

gives it a key advantage over the other circuits. In this paper it is  proposed CHIPSCOPE  

Implementation of a fully field programmable, architecture for a CRC computation circuit.  The 

resulting architecture is able to support all types and sizes of CRC polynomial, for all types of 

protocols and data encryption. The architecture has been authored in VHDL,  synthesized, and 

implemented using Xilinx ISE Foundation 10.1i, chipscope.  For Behavioral   simulation, Place and 
Route simulation Modesim6.0 is used.  

Key words : CRC (cyclic Redundancy check) ,FEC(Forward Error correction), Generator polynomial, 

LFSR(Linear feed back Shift Register), Reconfigurable circuit. 

 

I.      Introduction 
 In information theory and coding theory with applications in computer science and telecommunication, 
error detection and correction or error control are techniques that enable reliable delivery of digital data over 

unreliable communication channels. Many communication channels are subject to channel noise, and thus errors 

may be introduced during transmission from the source to a receiver. Error detection techniques allow detecting 

such errors, and error correction enables reconstruction of the original data. Error detection is the detection of 

errors caused by noise or other impairments during transmission from the transmitter to the receiver. Error 

detection techniques are that enable reliable delivery of digital data over unreliable communication channel. 

Many communication channels are subject to channel noise, and thus errors may be introduced during 

transmission from the source to a receiver. Error detection techniques allow detecting such errors. 

 The general idea for achieving error detection and correction is to add some redundancy  i.e., some 

extra data to a message, which receivers can use to check consistency of the delivered message, and to recover 
data determined erroneous.The transmitter sends the original data, and attaches a fixed number of check bits  or 

parity data , which are derived from the data bits by some deterministic algorithm. If only error detection is 

required, a receiver can simply apply the same algorithm to the received data bits and compare its output with 

the received check bits, if the values do not match, an error has occurred at some point during the transmission.  

 A CRC is one of the an error-detecting code. Its computation resembles a polynomial long division 

operation in which the quotient is discarded and the remainder becomes the result, with the important distinction 

that the polynomial coefficients are calculated according to the carry-less arithmetic of a finite field. The length 

of the remainder is always less than the length of the divisor called the generator polynomial , which therefore 

determines how long the result can be. The definition of a particular CRC specifies the divisor to be used, 

among other things. An important reason for the popularity of CRCs for detecting the accidental alteration of 

data is their efficiency guarantee. Typically, an n-bit CRC, applied to a data block of arbitrary length, will detect 
any single error burst not longer than n bits  and will detect a fraction 1−2−n of all longer error bursts. Errors in 

both data transmission channels and magnetic storage media tend to be distributed non-randomly i.e. are 

„bursty‟, making CRCs' properties more useful than alternative schemes such as multiple parity checks.The 

simplest error-detection system, the parity bit, is in fact a trivial 1-bit CRC, it uses the generator polynomial 

x+1. 

http://en.wikipedia.org/wiki/Information_theory
http://en.wikipedia.org/wiki/Coding_theory
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Telecommunication
http://en.wikipedia.org/wiki/Digital_data
http://en.wikipedia.org/wiki/Communication_channel
http://en.wikipedia.org/wiki/Noise_%28electronics%29
http://en.wikipedia.org/wiki/Redundancy
http://en.wikipedia.org/wiki/Deterministic_algorithm
http://en.wikipedia.org/wiki/Error_detection
http://en.wikipedia.org/wiki/Polynomial_long_division
http://en.wikipedia.org/wiki/Quotient
http://en.wikipedia.org/wiki/Remainder
http://en.wikipedia.org/wiki/Result
http://en.wikipedia.org/wiki/Coefficient
http://en.wikipedia.org/wiki/Finite_field
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Error_burst
http://en.wikipedia.org/wiki/Parity_bit
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 Cyclic redundancy check (CRC) is an error detecting code that is widely used to detect corruption in 

blocks of data that have been transmitted or stored. A stand alone intellectual property (IP) core is ideal for 
accelerating CRC computation in many network and server applications. Hardware configurability that will 

allow unrestricted CRC sizes and polynomials enables a wide range of network transmission, storage and 

security applications to be supported at a low cost. The cost of chip design continues to increase due to factors 

such as high mask and respin costs. Next generation system-on chip (SoC) designs are highly expensive and 

therefore must be configurable to a range of applications and future proof where either product updates or 

protocol migration can occur. The fact that the reconfigurable CRC circuit that has been implemented can 

quickly switch between any polynomial gives it a key advantage over the other circuits referenced, in terms of 

flexibility and ease of upgrade for new and emerging applications and standards.  

 

II.      Computation of CRC 
 CRC functions have been widely implemented in software using methods such as lookup tables[4] and 

addition[5]. CRC is most efficient method used for detecting bit errors produced from medium related noise 

.CRCs are particularly easy to implement in hardware. Cyclic Redundancy Check (CRC) is an error detecting 

code that is widely used to detect corruption in blocks of data that have been transmitted or stored. Enables a 

wide range  of network transmission, storage and security applications to be supported at a low cost. CRCs are 

specifically designed to protect against common types of errors on communication channels., it  is a single or 

burst error detecting  code    designed to detect accidental changes to digital data in computer networks. It is 

characterized by specification called G(x), Generator Polynomial. Goal to maximize the  probability of 
detecting an error. 

 To compute an n-bit binary CRC, place the bits  representing the input in a row, and position the (n+1)-

bit pattern representing the CRC's divisor called a Generator polynomial underneath the left-hand end of the 

row.  The  first calculation for computing a 3-bit CRC: 

  

11010011101100 <--- input 

1011                      <--- divisor (4 bits) 

-------------- 

01100011101100 <--- result 

 

If the input bit above the leftmost divisor bit is 0, do nothing and move the divisor to the right by one 
bit. If the input bit above the leftmost divisor bit is 1, the divisor is exclusive-ORed into the input (in other 

words, the input bit above each 1-bit in the divisor is toggled). The divisor is then shifted one bit to the right, 

and the process is repeated until the divisor reaches the right-hand end of the input row.  

The  last calculation is as follows: 

 

00000000001110 <--- result of previous step 

1011                     <--- divisor 

-------------- 

00000000000101 <--- remainder (3 bits) 

 

Since the leftmost divisor bit zeroed every input bit it touched, when this process ends the only bits in 

the input row that can be nonzero are the n bits at the right-hand end of the row. These n bits are the remainder 
of the division step, and will also be the value of the CRC function. 

 

III.     Over view of CRC Methodology 

3.1 CRC Algorithm 
 CRC is a polynomial based error detecting method.  A set of   check bits are to be computed for each 

frame and appended to the end of frame. The CRC value is computed as the remainder of the Modulo-2 division 

of the  message that is to be transmitted and the selected Generator polynomial. From the Message the Message 

polynomial has to be formed. It consists of nth degree polynomial in this the value of each bit is a coefficient 

 

• Example:  1   0   0   1    1   1   0  0 

                                x7 x6  x5 x4  x3   x2  x1   x0                      

         

M(x)= x
7
+x

4
 +x

3
+x

2 
 - Message Polynomial. 

 

The Coefficients with zeros will be vanished. With the remaining terms  Message polynomial will be formed. 

http://en.wikipedia.org/wiki/Polynomial
http://en.wikipedia.org/wiki/Exclusive_or
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Step1: Compute M(x) * Xk, equivalent  to adding k No. of  zeros. 

 Example:  M(x)   = 1000, G(x) of degree 2  
           X3 * X2 =  X5       =T(x) (10000)  

Step2: Divide T(x) by G(x) 

Step3: Find remainder R(x)  = T(x) / G(x)  

Step4: Replace the Zeros that are added to the message Polynomial with the remainder  forms D(x),  D(x)is 

exactly divisible by G(x)  

Step5: Transmit D(x) 

  Where M(x) is the Message polynomial and K- is the highest order of the Generator polynomial G(x). 

This total product forms the   an intermediate polynomial T(x). A CRC vale is calculated as a remainder of the  

modulo-2 division. The remainder R(x) is appende to the end of the message for transmission that forms the 

polynomial D(x). At the receiver the process of division is carried out. Message appended with  remainder 

divide by  the same generator polynomial  gives you the remainder.. If there is no remainder i,e remainder is 
zero no errors are encountered.  Fig :1 shows the pictorial representation for the CRC Transmitting frame 

calculation. 

 
Fig : 1 Flow chart  of CRC Method 

 
IV.    Polynomial selection 

4.1 Designing CRC polynomials 

The selection of generator polynomial is the most important part of implementing the CRC algorithm. 

The polynomial must be chosen to maximise the error detecting capabilities while minimising overall collision 

probabilities. The most important attribute of the polynomial is its length (the number of the highest nonzero 

coefficient), because of its direct influence of the length of the computed checksum. 

The most commonly used polynomial lengths are: 

 9 bits (CRC-8) 

 17 bits (CRC-16) 

 33 bits (CRC-32) 

 65 bits (CRC-64) 

The design of the CRC polynomial depends on what is the maximum total length of the block to be 

protected (data + CRC bits), the desired error protection features, and the type resources for implementing the 

CRC as well as the desired performance. A common misconception is that the „best‟ CRC polynomials are 

derived from either an irreducible polynomial or an irreducible polynomial times the factor (1 + x), which adds 

to the code the ability to detect all errors affecting an odd number of bits. In reality, all the factors described 

above should enter in the selection of the polynomial. 

The advantage of choosing say a primitive polynomial as the generator for a CRC code is that the 

resulting code has maximal total block length; in here if r is the degree of the primitive generator polynomial 

then the maximal total block length is equal to 2r − 1, and the associated code is able to detect any single bit or 
double errors. If instead, we used as generator polynomial g(x) = p(x)(1 + x), where p(x) is a primitive 

polynomial of degree r − 1, then the maximal total block length would be equal to 2r − 1 − 1 but the code would 

be able to detect single, double, and triple errors. A polynomial g(x) that admits other factorizations may be 

chosen then so as to balance the maximal total block length with a desired error detection power. A powerful 

class of such polynomials, which subsumes the two examples described above, is that of BCH codes. Regardless 

of the reducibility properties of a generator polynomial of degree r, assuming that it includes the „+1‟ term, such 

http://en.wikipedia.org/wiki/Irreducible_polynomial
http://en.wikipedia.org/wiki/Irreducible_polynomial
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error detection code will be able to detect all error patterns that are confined to a window of r contiguous bits. 

These patterns are called „error bursts‟. 

4.2 Candidate polynomial selection 
The selection of a „good‟ polynomial for generic use is of course a matter of engineering judgment. The 

following selection process was chosen to result in polynomials that primarily maintained high Hamming 

Distance(HD) values to the longest data word lengths possible, secondarily achieved good performance at 

shorter lengths, and thirdly achieved good performance at longer lengths than the stated maximum usage length. 

The prioritization of these goals keeps in mind that embedded network applications typically have a maximum 

message length that needs a certain HD that short messages can benefit from improved HD protection so long as 

protection of long message is not materially sacrificed, and that sometimes a protocol revision adds messages 

longer than originally envisioned, so good performance at longer message lengths is desirable as a safety net.  

Fig.  2shows  the diagram illustrating the selection of generator polynomial depending on the Message bits that 

are to be transmitted. 

 
Fig 2 :  CRC Architecture 

 

V.     Implementation of CRC Architectue 
CRC is a well-established method to allow detection of a wide range of data transmission errors. A 

small number of bits  is added to the end of a long message so that the entire bit stream, when treated as a 

polynomial (or number), is divisible by a particular key Generator polynomial that is programmed into both the 

sender and receiver.CRC is a polynomial-based block coding method for detecting errors in blocks or frames of 

data. Number of Zeros equal to the highest order of the message polynomial is to be added to the data. This is 

equivalent to multiplying  M(x) by 2n, where n is the number of FCS digits.  After the modulo two division 
operation we will find the remainder. The computed bits are replaces the number of zeros added in the before 

operation.A CRC value is calculated as a remainder of the modulo-2 division of the original transmitted data 

with a specific CRC generator polynomial.  

The division uses modulo-2 arithmetic, where each digit is independent of its neighbour and numbers 

are not carried or borrowed, thus addition and subtraction are performed via an exclusive-OR (XOR) function. 

The remainder R(x) is appended to the end of the message before transmission. At the receiver, the message 

plus the FCS is divided by the same polynomial. If the remainder is zero then it can be assumed that no error has 

occurred. To implement the 64-bit CRC using the 32- bit plynomial value first 32-bit operation will be 

performed  the value will be stored in the output register again the value will be fed back to the Register which 

stores the last cycle CRC data value. The input data enters the array down the columns and the outputs are 

formed along the rows. The current CRC value is held in a register at the array output, which is fed back and 
XORed with the input data of the next clock cycle as part of the CRC computation process. The outputs are then 

stored in the registers for the next clock cycle. The computation of the next row depends on the result of the 

previous row. 

The architecture of CRC circuit is composed of different registers that are used to store data at different 

levels, the configurable XOR gates, Linear feed back shift registers are used to shift the data when Xor 

operation is performed. The input data enters the architecture from input data Register. The current CRC value 

is held in a register at the output, which is fed back and XORed with the input data of the next clock cycle as 

part of the CRC computation process. The outputs are then stored in the registers for the next clock cycle.  The 

desired CRC polynomial and the input port size are stored in registers. where the computation of each row is 

based on the result from the previous row. Fig 3 shows a diagram illustrating the architecture of the CRC circuit. 
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Fig 3 : CRC circuit architecture 

 
VI.      Simulation Results and Performance Analysis 

The Architecture shown in figure. 3 has been implemented in VHDL for 64-bit CRC circuit and its 

Synthesis, Mapping  was done with  Xilinx ISE 10.1   For Behavioral   simulation, Place and Route simulation 

Modesim6.0 is used. The resulting architecture is able to support all types and sizes of CRC polynomial, for all 

types of protocols and data encryption. The VHDL Module of 64-bit CRC is shown in fig.4.  

 
Fig.4 VHDL Module of  64-bit CRC 

 

The Hardware description languages are most used for is the Register Transfer Level (RTL). Between gate level 

on the low abstraction side and system level on the high abstraction side, The RT level of abstraction is a good balance 
between corresponds to actual hardware and ease of description for hardware designers. At this level of abstraction 

designs can be simulated with HDL simulators, they are synthesizable and automatic generation of hardware is provided 

by most hardware design EDA tools. Routing and Placement phase decides on the placement of cells of the target 

hardware. Wiring inputs and outputs of these cells through wiring channels and switching areas of the target hardware 

are determined by the routing and placement phase. The output of this phase is specific to the hardware being used and 

can be used for programming an FPLD or Manufacturing an ASIC. RTL schematic 64-bit CRC circuit is shown in figure 

5. In integrated circuit design, register transfer level (RTL) description is a way of describing the operation of a 

synchronous digital circuit. In RTL design, a circuit's behavior is defined in terms of the flow of signals or transfer of 

data between hardware registers, and the logical operations performed on those signals. After the HDL synthesis phase of 

the synthesis process, use the RTL Viewer to view a schematic representation of the pre-optimized design.  
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Fig 5 :  RTL schematic of 64 -bit CRC circuit  generated by the Synthesis 

 

VII.     Simulation Results 
The simulation is done by using the Modelsim6.0 simulation and the synthesis is done by  using the 

Xilinx ISE synthesis tool. Behavioral simulation waveform of 64-bit CRC circuit  is shown in figure 6. 

 

 
Fig 6: Simulation result of 64-bit CRC circuit 

 

The Synthesis Report  presented in  Table shown below. From the device utilization summary   Only 

29% utilization of Flip flop is done. So on the same FPGA chip 128 bit ,256 bit CRC can also be implemented. 
Logic Utilization Used Resources Available Resources     %  utilization 

Number of slice flip flops 563 1,920 29% 

Number of 4 input LUTs 195 1,920 10% 

Number of occupied Slices 285 960 29% 

Number of bonded IOBs 51 66 77% 

Number of BUFGMUXs 2 24 8% 

Number of Slices containing only related 

logic 

285 285 100% 

Number of Slices containing only related 

logic 

0 285 0% 

Fig 7: Synthesis report for 64-bit CRC Circuit 

 

On-Chip Debugging using  CHIPSCOPE 
Driving signals to external I/O introduces additional problems like spurs glitches etc. So this is an 

Inflexible solution and also it is difficult or impossible to add additional debug pins if needed. Ultuimately we 

will have only  limited visibility to on-chip activities. ChipScope is an embedded, software based logic analyzer. 

By inserting an “Integrated CONtroller core” (ICON) and an “Integrated Logic Analyzer” (ILA) into the design 

and connecting them properly, we can monitor any or all of the signals in the design. ChipScope provides us 

with a convenient software based interface for controlling the “integrated logic analyzer,” including setting the 
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triggering options and viewing the waveforms. ChipScope Pro has an Integrated Logic Analyzer Core. So, No 

I/O Pins Required For Debugging. The complete access of the FPGA resources is done only using the JTAG 

Port. This provides an easy way to On-Chip access to every signal and node in the FPGA Design with using 
JTAG pins and eliminates the need for extensive dedicated I/O.  Driving Signals reduces all additional 

problems. It is easy to add and remove Cores at any time in the Design Process providing complete analysis and 

debugging solution. These ChipScope modules are extremely useful because they allow us to view and 

manipulate signals directly from hardware during run-time Touch the particular trigger (Reset button) on the 

hardware board to run the design, to respective buses and then hit the play button. It can be observed that the 

entire output signals are varied and we can do the verification. The Bus Plot waveform for the CRC circuit is 

shown in Fig.8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 8 : Bus Plot for CRC 

 

VIII. Conclusions 
The 64-bit field programmable CRC computation circuit is designed, synthesized, and implemented 

using Xilinx ISE Foundation 10.1i which can be used in Data communication Networks.  For Behavioral   

simulation, Place and Route simulation Modesim6.0 is used. This system has the features of  CRC parameters 

were fully programmable. This was achieved by deriving an array of processing cells to implement a matrix 

based computation technique.64-bit CRC circuit provides high flexibility while allowing high performance at a 

lower hardware cost. 

   

Future Scope 
The architecture is also generic in its design and can be scaled to 64-, 128-, or 256-bits in the data path, 

enabling support of throughput rates up to 40 Gb/s at 256-bits. It is further anticipated that a physical oriented 

design methodology, such as a data-pa th compiler can be used to optimize the regular structure of the 

programmable cell array, which could significantly increase the operational frequency while maintaining a low 

hardware cost. Such an optimized circuit represents an attractive hard macro for environments requiring low 

cost hardware flexibility, and in emerging areas such as iSCSI-based SANs, where the flexibility to adopt 
emerging protocols offers a key advantage to vendors. 
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