
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 4, Issue 2, Ver. I (Mar-Apr. 2014), PP 29-35

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

www.iosrjournals.org 29 | Page

Analysis of Different Multiplication Algorithms & FPGA

Implementation

K.Harika
1
, B.V.Swetha2, B.Renuka

3
, D.Lakshman Rao

4
, S.Sridhar

5

1, 2, 3, 4, 5
(Electronics & Communication, Lendi Institute of Engineering & Technology, India)

Abstract: As the scale of integration keeps growing, more and more sophisticated signal processing systems

are being implemented on a VLSI chip. These signal processing applications not only demand great

computation capacity but also consume considerable amounts of energy. While performance and area remain to

be two major design goals, power consumption has become a critical concern in today’s VLSI system design.

Multiplication is a fundamental operation in most arithmetic computing systems. Multipliers have large area,

long latency and consume considerable power. Multiplication is a basic arithmetic operation which is present in

any part of the digital computer especially in signal processing systems. Different techniques are used for

multiplication. Some of the techniques are CSA, CSD, Booth’s, Grid, Lattice, Combinational, Sequential, Array,

Vedic, Wallace-tree etc.

Keywords: Multiplier, VHDL, FPGA

I. Introduction
Power is a problem primarily when cooling is a concern. The maximum power at any time, peak power, is often

used for power and ground wiring design, signal noise margin and reliability analysis. Energy per operation or

task is a better metric of the energy efficiency of a system, especially in the domain of maximizing battery

lifetime. In digital CMOS design, the well-known power-delay product is commonly used to assess the merits of

designs.
[1]

Generally multiplication consists of three steps: generation of partial products or PPs (PPG), reduction

of partial products (PPR), and final carry-propagate addition (CPA). Different multiplication algorithms vary in

the approaches of PPG, PPR, and CA. For PPG, radix-2 digit-vector multiplication is the simplest form because

the digit-vector multiplication is produced by a set of AND gates. To reduce the number of PPs and

consequently reduce the area/delay of PP reduction, one operand is usually recoded into high-radix digit sets.

The most popular one is the radix-4 digit set {−2, −1, 0, 1, 2}. For PPR, two alternatives exist: reduction by

rows, performed by an array of adders, and reduction by columns, performed by an array of counters. In

reduction by rows, there are two extreme classes: linear array and tree array. Linear array has the delay of O (n)

while both tree array and column reduction have the delay of O (log n), where n is the number of PPs. The final

CPA requires a fast adder scheme because it is on the critical path. Some low-level techniques that has been

studied for multipliers include using voltage scaling, layout optimization, transistor reordering and sizing, using

pass-transistor logic and swing limited logic, signal polarity optimization, delay balancing and input

synchronization. However, these techniques have only achieved moderate improvement on power consumption

in multipliers with much design effort or considerable area/delay overhead. The difficulty of low-power

multiplier design lies in three aspects.
 [1]

This paper is outlined as follows: section 2 clearly elaborates all the multiplication techniques proposed

in this work in section 3 results of the experimental analysis is thoroughly discussed followed by conclusion in

section 4.

II. Different Multiplication Techniques
Multiplication is basically a shift add operation. There are, however, many variations on how to do it. Some are

more suitable for FPGA use than others; some of them may be efficient for a system like CPU. This section

explores various verities and attracting features of multiplication hardware. The multiplier area is quadratically

related to the operand precision. Second, parallel multipliers have many logic levels that introduce spurious

transitions or glitches. Third, the structure of parallel multipliers could be very complex in order to achieve high

speed, which deteriorates the efficiency of layout and circuit level optimization. As a fundamental arithmetic

operation, multiplication has many algorithm-level and bit-level computation features in which it differs from

random logic. These features have not been considered well in low-level power optimization. It is also difficult

to consider input data characteristics at low levels. Therefore, it is desirable to develop algorithm and

architecture level power optimization techniques. We have designed many multipliers and compared all of them

that are given below [1].

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 30 | Page

2.1. Shift-And-Add Multiplier

Shift-and-add multiplication is similar to the multiplication performed by paper and pencil. This method adds

the multiplicand X to itself Y times, where Y denotes the multiplier. To multiply two numbers by paper and

pencil, the algorithms is to take the digits of the multiplier one at a time from right to left, multiplying the

multiplicand by a single digit of the multiplier and placing the intermediate product in the appropriate positions

to the left of the earlier results.

Fig.1.Flowchart for Shift & Add

2.2. Array Multiplier

Array multiplier is well known due to its regular structure. Multiplier circuit is based on add and shift algorithm.

Each partial product is generated by the multiplication of the multiplicand with one multiplier bit. The partial

product are shifted according to their bit orders and then added.

The addition can be performed with normal carry propagate adder. N-1 adders are required where N is the

multiplier length

2.2.1. Advantages

First advantage of the array multiplier is that it has a regular structure. Since it is regular, it is easy to

layout and has a small size. . A second advantage of the array multiplier is its ease of design for a pipelined

architecture.

Fig.2.Architecture of 3x3 array multiplier [2]

2.2.2. Limitations

Major limitation of array multiplier is its size. As operand sizes increase, arrays grow in size at a rate

equal to the square of the operand size.

2.3. Carry Save Adder

Carry save adder is used to compute sum of three or more n-bit binary numbers. Carry save adder is same as a

full adder. A carry-save adder is a type of digital adder, used in computer micro architecture. It differs from

other digital adders in that it outputs two numbers of the same dimensions as the inputs, one which is a sequence

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 31 | Page

of partial sum bits and another which is a sequence of carry bits. The idea of delaying carry resolution until the

end, or saving carries, is due to John von Neumann. [3]

If the adder is required to add two numbers and produce a result, carry-save addition is useless, since the result

still has to be converted back into binary and this still means that carries have to propagate from right to left. But

in large-integer arithmetic, addition is a very rare operation, and adders are mostly used to accumulate partial

sums in a multiplication. [3]

Fig.3. Architecture of Carry save Adder [3]

2.3.1 Drawbacks

At each stage of a carry-save addition,

1. We know the result of the addition at once.

2. We still do not know whether the result of the addition is larger or smaller than a given number (for

instance, we do not know whether it is positive or negative)

2.4. Booth Multiplier

 Booth„s Algorithm is a smart move for multiplying signed numbers. It initiate with the ability to both

add and subtract there are multiple ways to compute a product. Booth„s algorithm is a multiplication algorithm

that utilizes two„s complement notation of signed binary numbers for multiplication. [4]

More specific, the following table explains in detail:

Table 1

2.5. Modified Booth’s Multiplier

A simplified proof of a modification of Booth's multiplication algorithm by MacSorley to a form which

examines three multiplier bits at a time is presented. In comparison with the original Booth‟s algorithm, which

examines two bits at a time, the modified algorithm requires half the number of iterations at the cost of

somewhat increased complexity for each iteration.[5]

Fig.5.4. Block diagram for modified Booth Multiplier: [5]

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 32 | Page

III. Experimental Analysis
3.1. Shift And Add Multiplier

Fig 3.1.Simulation Waveform for shift & add:

Fig3.2.Synthesized Circuit for Shift & Add :

3.2. Array Multiplier :

Fig 3.3.Simulation Waveform for Array Multiplier

Fig 3.4.Synthesized Circuit for Array Multiplier:

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 33 | Page

 3.3. Carry Save Adder:

Fig3.5.Simulation Waveform for Carry save Adder:

Fig.3.6.Synthesized Circuit for Carry Save Adder:

3.4. Booth‟s Multiplier:

Fig 3.7.Simulation Waveform for Booth Multiplier:

Fig 3.8.Synthesized Circuit for Booth Multiplier

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 34 | Page

3.5. ModifiedBooth‟s Multiplier:

Fig 3.9.Simulation Waveform for Modified Booth Multiplier:

Fig 3.10.Synthesized Circuit for modified Booth Multiplier

Comparision Analysis Clearly Specifying The Time Taken For Execution And Hardware Consumed

Are Explained In Table 2 :

Table 2
Technique

Name

Booth

multiplier

Shift add

multiplier

Array

multiplier

Csa Multiplier Modified booth

multiplier

Macro cells used 120/144 103/144 17/36 23/36 106/144

Pterms used 640/720 473/720 9/180 113/180 501/720

Registers used 0/144 0/144 0/36 0/36 16/144

Pins used 16/0 32/0 32/34 26/34 33/0

IV. Conclusion:
These days speed of the multiplier has become an asset or constraint due to the importance of multiplier circuit

in a wide variety of microelectronic systems. In this paper we analysed different multiplier techniques taking

speed as the main criteria. Carry save adder is proved to be more efficient in terms of speed compared to

conventional multiplication techniques generated the output in 2.06 sec, whereas the booth multiplier generated

the output in 3.09sec while the shift &add multiplier produced the output in 2.31 sec. However the array

multiplier generated the output in 2.75sec and modified booth multiplier in around 3.08 sec.The carry save adder

on the other hand consumes less hardware than other multiplication techniques.

References:
[1] GarimaTiwari “Analysis, Verification and FPGA Implementation of Low Power Multiplier”.

[2] Kripa Mathew, S.AshaLatha, T.Ravi, E.Logashanmugam “design and analysis of an Array Multiplier using an Area Efficient full

adder cell in 32 nm CMOS Technology”.
[3] ChakibAlaoui “Design and Simulation of a Modified Architecture of Carrysave Adder”.

[4] DeepaliChandel,GaganKumawat, PranayLahoty, VidhiVartChandrodaya, Shailendra Sharma.International Journal of Emerging

Technology and Advanced Engineering Volume 3, Issue 3, March 2013”Booth Multiplier: Ease of multiplication”.
[5] International Journal of Engineering Science InventionShaik.Kalisha Baba, D.Rajaramesh “Design and Implementation of

Advanced Modified Booth Encoding Multiplier”.

[6] G.W. Bewick, “Fast Multiplication: Algorithms and Implementation.“Ph.D. dissertation, Stanford University, Feb. 1994
[7] Shiann-RongKuang, Jiun-Ping Wang, and Cang-Yuan Guo, “Modified Booth multipliers with a Regular Partial Product Array,”

IEEE Transactions on circuits and systems-II, vol 56, No 5, May 2009.

Analysis of Different Multiplication Algorithms & FPGA Implementation

www.iosrjournals.org 35 | Page

[8] 8.M. Zamin Ali Khan1, Hussain Saleem2, Shiraz Afzal3 and Jawed Naseem4, ― An Efficient 16-Bit Multiplier based on Booth

Algorithm, international Journal of Advancements in Research & Technology, Volume 1, Issue 6, November-2012 ISSN 2278-7763

[9] Dr. Ravi Shankar Mishra,Prof. PuranGour,BrajBihariSoni, ―Design and Implements of Booth and Robertson„s multipliers
algorithm on FPGA.‖ International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622.

[10] F.C Cheng, S. H. Unger, “Self-Timed Carry-Look Ahead Adders”, IEEE Transactions on Computers, Vol. 49, No. 7, July 2000

