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Abstract: Addition is most commonly performed arithmetic operation.Adder is basic building block of 

most of digital systems. Improvement in speed of adder indirectly improves speed of system. Hence careful 

design optimization is required. VHDL coding of different adders is done and comparative analysis is made. 

Each adder has its own positives and negatives in terms of speed and area. Various adders are designed  using  

VHDL. Then, they  are  simulated  and  synthesized  using  Xilinx  ISE  9.2i  for  Spartan 3E family device with 

speed grade -5. 
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I. Introduction 
In Processors adder is an important element. As such, extensive research continues to be focused on 

improving the power-delay performance of the adder. In VLSI implementations, parallel-prefix adders are 

known to have the best performance. Reconfigurable Field Programmable Gate Arrays (FPGAs) has been 

gaining in popularity in recent years because it offers improved performance in terms of speed and power over 

DSP-based  and  microprocessor-based  solutions  for  many  practical  designs   and a significant reduction in 

development time and cost over Application Specific Integrated Circuit (ASIC) designs. 

Fast and accurate operation  of  digital system  depends on  the  performance  of adders [5].    Hence  

improving  the  performance of  adder is the  main  area  of  research  in  system  design. Arithmetic (such as 

addition, subtraction, multiplication and division) performed in a program, additions are required to increment 

the program counter and to calculate the effective address . show that in a prototypical RISC machine (DLX) 

72% of the instructions perform additions (or subtractions) in the data path.  Over  the last  decade  many  

different  adder  architectures were studied and proposed to speed up the binary additions. 

Performance  of   different adders  is discussed. Several adder structures are implemented and 

characterized on a FPGA including Ripple Carry  Adder  (RCA)  and  the  Carry  Look Ahead  Adder  (CLA).   

 

II. Ripple Carry Adder 
Arithmetic operations like addition, subtraction, multiplication, division are basic operations to be 

implemented in digital computers using basic gates like AND, OR, NOR, NAND etc. Among all the arithmetic 

operations if we can implement addition then it is easy to perform multiplication (by repeated addition), 

subtraction (by negating one operand) or division (repeated subtraction). Half Adders can be used to add two 

one bit binary numbers and Full adders to add two three bit numbers.The block diagram of 4-bit Ripple Carry 

Adder is shown here below in Figure.1.- 

It is possible to create a logical circuit using multiple full adders to add N-bit numbers. Each full adder 

inputs a Cin, which is the Cout of the previous adder. This kind of adder is called a ripple-carry adder, since each 

carry bit "ripples" to the next full adder. Note that the first (and only the first) full adder may be replaced by a 

half adder (under the assumption that Cin = 0). The block diagram of 4-bit Ripple Carry Adder is shown here 

below – 

 
 

Fig.1. 4 bit Ripple Carry Adder 
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The layout of a ripple-carry adder is simple, which allows for fast design time; however, the ripple-

carry adder is relatively slow when number of stages get increased[2][3], since each full adder must wait for the 

carry bit to be calculated from the previous full adder. The gate delay can easily be calculated by inspection of 

the full adder circuit. Each full adder requires three levels of logic. In a 32-bit ripple-carry adder, there are 32 

full adders, so the critical path (worst case) delay is 3 (from input to carry in first adder) + 31 * 2 (for carry 

propagation in later adders) = 65 gate delays.  

 
Fig.2. Ripple-carry adder, illustrating the delay of the carry bit. 

 

The disadvantage of the ripple-carry adder is that it can get very slow when one needs to add many bits.  

 

III. Carry Look Ahead Adder 
 To reduce the computation time, there are faster ways to add two binary numbers by using carry look 

ahead adders. They work by creating two signals P and G known to be Carry Propagator and Carry Generator. 

The carry propagator is propagated to the next level whereas the carry generator is used to generate the output 

carry , regardless of input carry. The Figure shows the full adder circuit used to add the operand bits in the i th 

column; namely Ai & Bi and the carry bit coming from the previous column (Ci ).   

 
Fig.3. Full Adder using two Half Adders. 

 

In this circuit, the 2 internal signals Pi and Gi are given by:  

Propagate Term = Pi = Ai ⊕Bi ……………………..(1)  

Generate Term = Gi = AiBi ……………….………...(2)  

The output sum and carry can be defined as : 

 Si = Pi ⊕ Ci ………………………………………...(3) 
Ci+1 = Gi + PiCi ……………………………………...(4) 

where i =0,1,…….., n 1. Equation (4) can be further expanded into 

Ci+1 = gi+pigi-1+………..+pipi-1……p1g0+pipi-1……p0C0………(5) 

https://en.wikipedia.org/wiki/Gate_delay
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the carry-look ahead scheme can be built in the form of a tree-like circuit, which has a simple, regular 

structure ,Gi is known as the carry Generate signal since a carry (Ci+1) is generated whenever Gi =1, regardless 

of the input carry (Ci). Pi is known as the carry propagate signal since whenever Pi =1, the input carry is 

propagated to the output carry, i.e., Ci+1. = Ci. Computing the values of Pi and Gi only depend on the input 

operand bits (Ai & Bi) as clear from the Figure and equations. Thus, these signals settle to their steady-state 

value after the propagation through their respective gates. Computed values of all the Pi’s are valid one XOR-

gate delay after the operands A and B are made valid. Computed values of all the Gi’s are valid one AND-gate 

delay after the operands A and B are made valid. The Boolean expression of the carry outputs of various stages 

can be written as follows: 

C1 = G0 + P0C0 ………………………………………………………………..(6) 

C2 = G1 + P1C1 = G1 + P1 (G0 + P0C0) ……………………………………...(7) 

      = G1 + P1G0 + P1P0C0  

C3 = G2 + P2C2 = G2 + P2G1 + P2P1G0 + P2P1P0C0 ……………………….(8) 

C4 = G3 + P3C3 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0C0……....(9) 

 

In general, the i th. carry output is expressed in the form Ci = Fi(P’s, G’s , C0). In other words, each 

carry signal is expressed as a direct SOP function of C0 rather than its preceding carry signal. Since the Boolean 

expression for each output carry is expressed in SOP form, it can be implemented in two-level circuits. The 2-

level implementation of the carry signals has a propagation delay of 2 gates, i.e., 2τ.  

 

IV. Carry Save Adder 
There are many cases where it is desired to add more than two numbers together. The straightforward 

way of adding together m numbers (all n bits wide) is to add the first two, then add that sum to the next, and so 

on. This requires a total of m − 1 additions, for a total gate delay of O(m lg n) (assuming lookahead carry 

adders). Instead, a tree of adders can be formed, taking only O(lg m · lg n) gate delays. 

 Using carry save addition, the delay can be reduced further still. The idea is to take 3 numbers that to 

add together, x + y + z, and convert it into 2 numbers c + s such that x + y + z = c + s, and do this in O(1) time. 

The reason why addition can not be performed in O(1) time is because the carry information must be 

propagated. In carry save addition, we refrain from directly passing on the carry information until the very last 

step. 

 To add three numbers by hand, typically align the three operands, and then proceed column by column 

in the same fashion that perform addition with two numbers. The three digits in a row are added, and any 

overflow goes into the next column. when there is some non-zero carry, it is like adding four digits (the digits of 

x,y and z, plus the carry). 

 
The carry save approach breaks this process down into two steps. The first is to compute the sum ignoring any 

carries: 

 
Each si is equal to the sum of xi + yi + zi modulo 10. Now, separately, compute the carry on a column by 

column basis: 
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Fig.4. Carry Save Adder block same as Full adder 

 
Fig.5. One CSA block is used for each bit. 

 

This circuit adds three n = 8 bit numbers together into two new numbers.  

 
 

The important point is that c and s can be computed independently, and furthermore, each ci (and si) 

can be computed independently from all of the other c’s (and s’s). This achieves original goal of converting 

three numbers that to add into two numbers that add up to the same sum, and in O(1) time. 

The same concept can be applied to binary numbers. As a quick example: 

 
 

A carry save adder simply is a full adder with the cin input renamed to z, the z output (the original 

“answer” output) renamed to s, and the cout output renamed to c. Figure 2 shows how n carry save adders are 

arranged to add three n bit numbers x,y and z into two numbers c and s. The CSA block in bit position zero 

generates c1, not c0. Similar to the least significant column when adding numbers by hand (the “blank”), c0 is 

equal to zero. All of the CSA blocks are independent, thus the entire circuit takes only O(1) time. To get the 

final sum, it need a RCA, which will cost O(lg n) delay. The asymptotic gate delay to add three n-bit numbers is 

thus the same as adding only two n-bit numbers. So how long does it take to add m different n-bit numbers 

together? The simple approach is just to repeat this trick approximately m times over. This is illustrated in 

Figure 3. There are m−2 CSA blocks (each block in the figure actually represents many one-bit CSA blocks in 

parallel) and then the final RCA. Every time when pass through a CSA block, number increases in size by one 

bit. Therefore, the numbers that go to the RCA will be at most n + m − 2 bits long. So the final RCA will have a 

gate delay of O(lg (n + m)). Therefore the total gate delay is O(m + lg (n + m)) Instead of arranging the CSA 

blocks in a chain, a tree formation can actually be used.  
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V. Performance Analysis 
Below in table 1.,table 2. table 3. Show delay and area utilized  by different adders, for family Spartan 

3E(90 nm process technology) and with speed grade -5. 

 

TABLE 1. 

Simulation Of Different Adders For Addition Of Two Numbers,  

Each One Is 8 Bit Long 

Adder name 
Area 

Delay ns 
Slices LUTs IOBs 

Carry look ahead 9 15 25 12.025 

Ripple carry 9 15 25 12.675 

 

TABLE 2 

Simulation Of Different Adders For Addition Of Three Numbers,  

Each One Is 8 Bit Long 

Adder name 
Area 

Delay ns 
Slices LUTs IOBs 

Carry save with Ripple carry at  

last  stage 
17 30 34 

 

13.245 

Carry save with Carry look 

ahead  at  last  stage 
17 30 34 

 

13.367 

Carry look ahead 

 
18 31 34 13.398 

Ripple carry 18 31 34 13.476 

 

TABLE 3 

Simulation Of Different Adders For Addition Of Four Numbers, 

 Each One Is 8 Bit Long 

Adder name 
Area 

Delay  ns 
Slices LUTs IOBs 

Carry save with Ripple 

carry at  last  stage 
25 43 42 14.338 

Carry save with Carry look 

ahead  at  last  stage 
26 46 42 14.377 

Carry look ahead 

 
26 46 42 14.349 

Ripple carry 26 46 42 14.466 

 

Verification is carried out by ISE simulator. Simulation results of proposed design is shown in 

following figures.  

 

 
Fig.6. Simulation result for addition of two 8 bit numbers 

 

 
Fig.7. Simulation result for addition of three 8 bit numbers 
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Fig.8. Simulation result for addition of two 8 bit numbers 

 

VI. Conclusion 
After observing results of comparisons, for two 8bit numbers addition, carry look ahead adder is better. 

For three and four 8 bit numbers addition carry save adder with last stage built by ripple carry adder is 

preferable. In future work, it  is needed to design unique adder which provides low area as well as delay in order 

to meet the needs of current industry. Further, this work can be extended by designing and simulating the adders 

with increased number of bits such as 16bits, 32bits and 64 bits. 

 

References 

Journal Papers: 
[1]  R.UMA, Vidya Vijayan , M. Mohanapriya, Sharon Paul,” Area, Delay and Power Comparison of Adder Topologies”, International 

Journal of  VLSI design & Communication Systems (VLSICS) Vol.3, No.1, February 2012. 

[2] Animul  islam,  M.W.  Akram,  S.D.  pable  ,Mohd.  Hasan,  “Design  and  Analysis  of  Robust  Dual Threshold CMOS  Full  

Adder  Circuit in 32  nm  Technology”, International  Conference  on  Advances in Recent Technologies in Communication and 

Computing,2010. 
[3] Deepa Sinha,  Tripti Sharma, k.G.Sharma, Prof.B.P.Singh,  “Design and  Analysis  of  low  Power  1-bit Full Adder Cell”,IEEE, 

2011. 

[4] V.Krishna Kumari, Y.Sri Chakrapani,” Designing and Characterization of koggestone, Sparse Kogge stone, Spanning tree and 

Brentkung Adders” International Journal of Modern Engineering Research (IJMER) Vol. 3, Issue. 4, July-august. 2013 pp-2266-

2270   
[5] Pakkiraiah Chakali, Madhu Kumar Patnala,” Design of High Speed Kogge-Stone Based Carry Select Adder  ”  International Journal 

of Emerging Science and Engineering (IJESE) ISSN: 2319–6378, Volume-1, Issue-4, February 2013. 

[6] B. Ramkumar, Harish M Kittur, “Low –Power  and  Area-Efficient Carry  Select  Adder”,  IEEE  transaction  on  very  large  scale  

integration (VLSI) systems, vol.20, no.2, pp.371-375, Feb 2012. 

[7] J. Lim, D. G. Kim, and S. I. Chae, “A 16-bit carry-lookahead adder using reversible energy recovery logic for ultra-low-energy 
systems”, IEEE Journal of Solid-State Circuits, 1999, vol. 34, pp. 898-903.  

 

Books: 
[8]  Mano, M. M. and C. R. Kime, Logic and computer design fundamentals, Prentice-Hall, 2001.  
[9]  Weste, N. H. E. and K. Eshraghian,  Principles of CMOS VLSI Design: A Systems Perspective 2/E, Addison-Wesley, 1998. 


