
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 5, Issue 6, Ver. I (Nov -Dec. 2015), PP 27-33

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-05612733 www.iosrjournals.org 27 | Page

Optimized Implementation of Edge Preserving Color Guided

Filter for Video on FPGA

Anita Anandrao Salunkhe
1
, Uttam Laxman Bombale

2

1
(PG Scholar (Electronic Engg.), Department of Technology, Shivaji University, Kolhapur, Maharashtra, India)

2
(Assoc. prof. (Electronic Engg), Department of Technology, Shivaji University, Kolhapur, Maharashtra, India)

Abstract: Filtering is widely used in image and video processing for various applications like noise reduction,

feature extraction, smoothing, detail enhancement etc. Bilateral filter is a most popular filtering method but it

produces gradient reversal artifacts near edges. To overcome this drawback, guided filter is used for various

applications. To develop real time detail enhancement application, hardware implementation of guided filter is

proposed by using system generator tool. In this paper, guided filter is implemented on FPGA for video with

optimized frame rate of 284 fps to make time efficient system and also resources are optimized to make area

efficient system. This hardware based design of guided filter using color guidance image is applied for real time

video in detail enhancement application.

Keywords -Guided filter, detail enhancement, FPGA, resource optimization, system generator.

I. Introduction
Image filtering is a technique in image and video processing which is used to reduce noise and extract

important features. Applications which are based on image filtering are smoothing, detail enhancement, texture

editing, colorization, haze removal, feathering, etc. Image filtering is classified into two groups: transform

domain and spatial domain. In transform domain filtering, image transform is taken and then operations are

performed. And finally, inverse transform is carried out to get output in spatial domain. Spatial domain filtering

has two types: intensity transformation and spatial filtering. In intensity transformation, operation is performed

on one pixel only. And in case of spatial filtering, value of pixel is computed by performing operation on

neighborhood pixels. Spatial filtering is subdivided into two types: linear and non-linear spatial filtering. If

operation performed on pixels is linear then it is said to be linear filtering and if operation performed on pixels is

non-linear then it is called non-linear filtering.

In particular, edge preserving filtering is very much important in variety of applications like

sharpening, blurring, edge detection and detail enhancement. For this purpose, different edge preserving filtering

techniques has been developed such as sparse norm filtering [1], anisotropic diffusion [2], weighted least square

[3], bilateral filter [4], etc. Sparse norm filtering and anisotropic diffusion are time consuming methods.

Weighted least square reduces ringing effect near edges but many parameters from blurred data are required.

Among these techniques, bilateral filter is a most popular, simple and non-iterative filter which is used in variety

of applications like HDR compression [5], noise reduction [6], detail decomposition [7], etc. Flash / no-flash

denoising [8] and joint upsampling [9] are the applications of joint bilateral filter. Though bilateral filter is a

most popular filter it has major drawbacks. As it produces gradient reversal artifacts [5], [7] near edges as

shown in Fig. 1. Also it is less accurate and it is having more computational complexity [10]. Fast

implementation of bilateral filter is also a challenging task.

Fig. 1. Detail Enhancement by Bilateral and Guided filter [10]

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 28 | Page

To overcome the drawbacks of bilateral filter, guided filter [10] is developed which has same edge

preserving property like bilateral filter. Output produced by guided filter is free from gradient reversal artifacts

as shown in Fig. 1. Its behavior near edges is good as compared to bilateral filter. It is a non-approximate, fast,

linear type of filter which can be used in variety of real time applications. Importance filtering [11] utilizes

guided filter to filter out image saliency. Guided filter is applied at post processing step in alpha matting [12].

Guided filter is used for fast cost volume filtering to improve the quality which is degraded by bilateral filter

[13]. Chia et al. [14] used guided filter for semantic colorization with the help of images from internet. In [15],

guided filter is used in single image multi-focusing which is based on local blur estimation. Zhang et al. [16]

used guided filter to remove haze from video with spatial and temporal coherence. Hosni et al. [17] applied

guided filter for computing temporally consistent disparity maps from video.

With increase in image sizes, software for image processing has become less useful as PC processors

are made for general purpose. In order to deal with large image sizes and high speed, hardware devices are

needed. Parallel processing hardware is essential in image processing to perform large number of operations and

high speed data transfer. FPGA is having the capability of parallel processing and hence it is a good platform for

image processing [18]. So, here we are using FPGA for implementation of guided filter. In [19], guided filter for

video is implemented with frame rate of 30 fps. Here, frame rate is optimized to make time efficient system.

And also resources are optimized to make area efficient system. Performance of guided filter using color

guidance image is better as compared to grayscale guidance image [10]. Hence, we are implementing color

guided filter for video for real time detail enhancement application with the help of Xilinx system generator.

The paper is organized as follows. The guided filter and its algorithm are described in Section II.

Hardware implementation of guided filter for detail enhancement application is discussed in Section III. The

results are analyzed in Section IV. Section V concludes the paper.

II. Guided filter
 Guided filter produces filtered output ‘q’ by using guidance image ‘I’ and input image ‘p’. Based on

the application, guidance image can be input image itself or different image.

qi is a local linear transform of guidance image I in a window ωk centered at pixel k as shown in Fig. 2,

which can be given as

𝑞𝑖 = 𝑎𝑘𝐼𝑖 + 𝑏𝑘, ∀𝑖 ∈ 𝜔𝑘 (1)

 Where ak and bk are linear coefficients in a window ωk which is having radius r. Pixel i and windows ωi

and ωk are shown in Fig. 2.

Fig. 2. Illustration of pixel i and windows (ωi and ωk)

 Equation (1) is a local linear model which shows that q has an edge only if I has an edge, because

∇q=a∇I. He et al. [10] defined the following cost function in the window as

𝐸(𝑎𝑘 , 𝑏𝑘) = ∑ ((𝑎𝑘𝐼𝑖 + 𝑏𝑘 − 𝑝𝑖)
2 + 𝜀𝑎𝑘

2)

𝑖∈𝜔𝑘

 (2)

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 29 | Page

 Here ε is a regularization parameter which prevents ak from being too large. Solution of linear

coefficients ak and bk for above cost function is given as

𝑎𝑘 =

1

|𝜔|
∑ 𝐼𝑖𝑝𝑖 − 𝜇𝑘�̅�𝑘𝑖∈𝜔𝑘

𝜎𝑘
2 + 𝜀

 (3)

𝑏𝑘 = �̅�𝑘 − 𝑎𝑘𝜇𝑘 (4)

 Here μk and 𝜎𝑘
2are mean and variance of I in ωk. |ω| is number of pixels in ωk. �̅�𝑘 is the mean of p in ωk

which is given as

�̅�𝑘 =
1

|𝜔|
∑ 𝑝𝑘

𝑖∈𝜔𝑘

 (5)

 For pixel i in the image, the value of qi is different for different windows as shown in Fig. 2. So simple

strategy is to average the values of qi. So after computing linear coefficients for all windows ωk in the image, the

filtered output is given as

𝑞𝑖 =
1

|𝜔|
∑ (𝑎𝑘𝐼𝑖 + 𝑏𝑘)

𝑘:𝑖∈𝜔𝑘

 (6)

= �̅�𝑖𝐼𝑖 + �̅�𝑖 (7)

Now, edge preserving filtering for guided filter is explained. Consider the case I = p. If ε = 0 then

solution to equation (2) is ak = 1 and bk = 0. If ε>0, two cases are formed:

Case 1: “flat patch.” if the image I is constant in ωk then we get ak = 0 and bk = �̅�𝑘.

Case 2: “high variance.” if the image I changes a lot in ωk then we get ak = 1 and bk = 0.

ak, bk are averaged to get �̅�𝑖 and �̅�𝑖 and then filtered output is computed by using equation (7). If a pixel is in

middle of a “flat patch” area then its value becomes the average of neighborhood pixels and if a pixel is in

middle of a “high variance” area then its value is unchanged. This shows an edge preserving property of guided

filter.

1.1 Guided filter algorithm

1. Read the image say I (color image) which acts as the guidance image.

2. Take p=I, where p is filtering image (color image).

3. Take the values for r and ε where r is radius of window and ε is regularization parameter.

4. Compute following mean values by applying averaging filter ‘fmean’:

meanI = fmean(I)

meanp = fmean(p)

meanIp = fmean(I .* p)

meanII = fmean(I .* I)

5. Compute covariance of (I,p) using formula:

covIp = meanIp –meanI.* meanp

6. Compute variance using formula:

varI = meanII –meanI.* meanI

7. Compute linear coefficients a and b as:

a = covIp/ (varI + ε)

b = meanp – a .* meanI

8. Compute mean of a and b as:

meana = fmean(a)

meanb = fmean(b)

9. Compute filtered output as:

q = meana .* I + meanb

III. Hardware implementation
 System generator is a digital signal processing (DSP) design tool from Xilinx which uses model based

Simulink design environment for designing the FPGAs. It provides Xilinx specific blockset to capture the

design in Simulink modelling environment. While implementing system generator blocks, Xilinx Integrated

Software Environment (ISE) is working in background. System generator automatically invokes Xilinx core

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 30 | Page

generator to generate highly optimized netlists for the DSP building blocks. System generator performs all

downstream FPGA implementation steps such as synthesis, place and route automatically to generate

programming file for FPGA. Hardware implementation using system generator is shown in Fig. 3, which is time

efficient as compared to conventional HDL coding. The virtex-6 xc6vlx240t-1ff1156 FPGA device is employed

here and software used are Xilinx 14.2 and MATLAB 2012a. System generator has the ability to run a hardware

co-simulation.

Fig. 3. Hardware implementation using Xilinx system generator

Based on the guided filter algorithm which is explained in section III, guided filter is designed using

system generator tool. This design is compiled and downloaded to virtex-6 xc6vlx240t-1ff1156 FPGA device

for hardware co-simulation. Video generated by Simulink is sent to FPGA, processed and then returned to

DSP System Simulation

Implementation

Hardware

in the loop

Hardware

Verification

&

Acceleration

Simulink Model
Code Generation

System Generator

MATLAB Environment

RTL HDL & IP Core

Xilinx

Implementation

Flow

Bitstream

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 31 | Page

Simulink to display it. In this way, design can be tested with hardware in the loop by taking input and output

from MATLAB. This process is called as hardware co-simulation.

The block diagram of the system used for hardware implementation of guided filter on FPGA is shown

in Fig. 4. Video device used for experimental set up is color video camera with RGB as output color space. This

video input is used for detail enhancement purpose. The shared memory write interface is used to write received

data from video device into the shared memory of input buffer.

Fig. 4. Experimental setup for implementation of guided filter on FPGA for detail enhancement

The data received in the input buffer is then used for detail enhancement by using guided filter. Based

on the guided filter algorithm which is explained in section III, guided filter block gives the enhanced image as

shown in Fig. 5.

Fig. 5. Internal block diagram of guided filter block

Guided filter block is applied separately on three different channels R, G and B. For detail

enhancement application, input image p is used as guidance image. Guided filter takes input image from input

buffer. The meanI block calculates mean of guidance image I. Mean of (I*p) is obtained by using meanIp block.

In this block product of I and p is calculated and then its mean is calculated. The (meanI)
2
 block computes the

square of mean of I by using output of meanI block. The calculation of ‘a’ block gives value of ‘a’ by using

meanIp, (meanI)
2
 and ε values as per equation (3). The calculation of ‘b’ block gives value of ‘b’ by using a and

meanI values as per equation (4). The meana and meanb blocks are used for calculation of mean of a and mean

of b respectively. Smoothened Image block is utilized to obtain smoothened image by using meana, meanb and I

values as specified in equation (7). Then enhanced image is obtained by using the formula which is given as:

𝐼𝑒𝑛ℎ𝑎𝑛𝑐𝑒𝑑 = (𝐼 − 𝑞) ∗ 4 + 𝑞 (8)

The enhanced image is then stored into the output buffer’s shared memory. Shared memory read

interface is used to read data from output buffer for displaying it on display device.

IV. Result and discussion
 The paper describes and illustrates implementation of guided filter for color video on FPGA using

system generator. Our hardware design is tested by taking different color images and video stream. The results

in Fig. 6 shows and compares the results obtained by using MATLAB code implementation of guided filter and

hardware that is FPGA implementation of guided filter along with original image.

𝒎𝒆𝒂𝒏𝑰𝒑

(𝒎𝒆𝒂𝒏𝑰)
2

𝒎𝒆𝒂𝒏𝑰

Calculation

of ‘𝒂’

Calculation

of ‘𝒃’

𝒎𝒆𝒂𝒏𝒂

𝒎𝒆𝒂𝒏𝒃

Smoothened

Image
Enhanced

Image

𝒑

𝑰

𝒒
𝑰𝒆𝒏𝒉𝒂𝒏𝒄𝒆𝒅

𝟏

Video

Device

Shared

Memory
Write

Interface

Input

Buffer
Guided

Filter
Output

Buffer

Shared

Memory

Read

Interface

Display

Device

FPGA

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 32 | Page

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 6. Comparison of input image, guided filter MATLAB code output and guided filter hardware

implementation output (a) pepper image input. (b) MATLAB output for pepper image. (c) hardware output for

pepper image. (d) hestain image input. (e) MATLAB output for hestain image. (f) hardware output for hestain

image. (g) fabric image input. (h) MATLAB output for fabric image. (i) hardware output for fabric image. (j)

pears image input. (k) MATLAB output for pears image. (l) hardware output for pears image.

From Fig. 6 we can observe that details of the input image that is Fig. 6(a), Fig. 6(d), Fig. 6(g), Fig. 6(j)

are improved in both MATLAB code output and hardware implementation output. Same as results obtained in

fig. 6, also for video signals, improved results have been obtained at the frame rate of 284 fps. Hardware

implementation is done on FPGA that implies real time implementation of a guided filter for color video detail

enhancement is done. To check accuracy of the hardware implementation of the guided filter different

parameters such as PSNR and MSE between MATLAB output and hardware output, entropy, etc. are calculated

and are mentioned in the TABLE I.

Table I

Comparison between guided filter MATLAB code output and guided filter FPGA implementation output

PSNR values in the table are calculated between MATLAB output and hardware output since

MATLAB is proven tool and its output can be used to check accuracy of results. The higher PSNR signifies

lower MSE which means the hardware output is very much close to the output obtained from MATLAB code.

After synthesizing our guided filter hardware design we get operating frequency as 589 MHz. From

this we can calculate the frame rate by considering frame size as 1920x1080-

Frame rate = (operating frequency/frame size)
= (586MHz/(1920x1080))

= 284

Input image
Entropy

PSNR(dB) MSE
MATLAB FPGA

1.peppers.png 0.4009 0.4008 50.54 0.574

2.fabric.png 0.6992 0.6989 50.8 0.541

3.hestain.png 0.0930 0.0929 45.97 1.645

4.pears.png 0.1844 0.1843 48.7 0.877

Optimized Implementation of Edge Preserving Color Guided Filter for Video on FPGA

DOI: 10.9790/4200-05612733 www.iosrjournals.org 33 | Page

The proposed hardware design of guided filter for video is time efficient as it provides high frame rate

of 284 fps.

Virtex-6 xc6vlx240t-1ff1156 FPGA device is used for the hardware implementation of guided filter for

detail enhancement application. Resources utilized are summarized in the TABLE II which shows that our

guided filter implementation requires minimum number of resources which yields area efficient system.

Table II

Resource utilization summary
Logic utilization Used Available Utilization

Number of Slice Registers 10463 301440 3%

Number of Slice LUTs 1619 150720 1%

Number of fully used LUT-FF pairs 1198 10884 11%

V. Conclusion
 In this paper, hardware implementation of guided filter for video is proposed. The obtained hardware

outputs are pretty close to the MATLAB output. High frame rate i.e. 284 fps is achieved by the proposed

hardware design of guided filter, so it is well suited for video processing applications. Also this hardware design

is area efficient as its FPGA implementation requires minimum number of resources. Here, it gives better output

for detail enhancement application. Proposed guided filter FPGA design may perform well in many video

processing applications.

References
[1] C. Ye, D. Tao, M. Song, D. Jacobs, and M. Wu, Sparse Norm Filtering, arXiv preprint, arXiv: 1305.3971, 2013.

[2] P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE Trans. PAMI, 12(7), 1990, 629–639.

[3] R. L. Lagendijk, J. Biemond, and D. E. Boekee, Regularized iterative image restoration with ringing reduction, IEEE Trans.
Acoust., Speech, Signal Processing, 36(12), 1988, 1874–1888.

[4] C. Tomasi and R. Manduchi, Bilateral filtering for gray and color images, Proc. IEEE 6th ICCV, Mumbai, India, 1998, 839–846.

[5] F. Durand and J. Dorsey, Fast bilateral filtering for the display of high-dynamic-range images, ACM Trans. Graph., 21(3), 2002, 257–
266.

[6] C. Liu, W. Freeman, R. Szeliski, and S. B. Kang, Noise estimation from a single image, Proc. IEEE CVPR, New York City, NY,

2006, 901–908.
[7] Z. Farbman, R. Fattal, D. Lischinski, and R. Szeliski, Edge-preserving decompositions for multiscale tone and detail manipulation,

ACM Trans. Graph., 27(3), 2008, 67:1–67:10.

[8] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, Digital photography with flash and no-flash image
pairs, ACM Trans. Graph., 23(3), 2004, 664–672.

[9] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele, Joint bilateral upsampling, ACM Trans. Graph., 26(3), 2007.

[10] K. He, J. Sun, and X. Tang, Guided image filtering, Proc. 11th ECCV: PartI, Heraklion, Greece, 2010, 1–14.
[11] Y. Ding, J. Xiao, and J. Yu, Importance filtering for image retargeting, Proc. IEEE Conf. CVPR, Colorado Springs, CO, 2011, 89–

96.

[12] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun, A global sampling method for alpha matting, Proc. IEEE Conf. CVPR,
Colorado Springs, CO ,2011, 2049–2056.

[13] C. Rhemann, A. Hosni, M. Bleyer, C. Rother, and M. Gelautz, Fast cost-volume filtering for visual correspondence and beyond,

Proc. IEEE Conf. CVPR, Colorado Springs, CO, 2011, 3017–3024.
[14] A. Y. -S. Chia, S. Zhuo, R. K. Gupta, Y. -W. Tai, S. -Y. Cho, P. Tan, and S. Lin, Semantic colorization with internet images, ACM

Trans. Graph., 30(6), 2011, 156:1–156:8.

[15] Y. Cao, S. Fang, and F. Wang, Single image multi-focusing based on local blur estimation, Proc.6th ICIG, Hefei, Anhui, China,
2011, 168–175.

[16] J. Zhang, L. Li, Y. Zhang, G. Yang, X. Cao, and J. Sun, Video dehazing with spatial and temporal coherence, Vis. Comput., 27,

2011, 749–757.
[17] A. Hosni, C. Rhemann, M. Bleyer, and M. Gelautz, Temporally consistent disparity and optical flow via efficient spatio-temporal

filtering, Advances in Image and Video Technology, Gwangju, South Korea, 2011, 165–177.

[18] B. Dimitrios, T. Vassilis, F. Nikolaos, and T. Christos, An FPGA-based hardware implementation of configurable pixel-level color

image fusion, IEEE Trans. Geosci. Remote Sens., 50(2), 2012, 362–373.

[19] C. -C. Kao, J. -H. Lai, and S. -Y. Chien, VLSI Architecture Design of Guided Filter for 30 Frames/s Full-HD Video, IEEE Trans.
on Cir. and Sys. for Video Tech., 24(3), 2014, 513-524.

