
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)

Volume 6, Issue 3, Ver. I (May. -Jun. 2016), PP 58-66

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197

www.iosrjournals.org

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 58 | Page

Performance Analysis of Different Multipliers for Embedded and

DSP Applications

K. Vijetha
1
, S. Ch. Vijaya Bhaskar

2

1
K. Vijetha, Assistant Professor, Department of ECE, Matrusri Engineering College, Hyderabad

2
S. Ch. Vijaya Bhaskar, Assistant Professor, Department of IT, MVSR Engineering College, Hyderabad

Abstract: This Paper presents an efficient implementation of high speed multiplier using the shift and add

method, Radix_2, Radix_4 modified Booth multiplier algorithm. In This paper we compare the working of the

three multipliers by implementing each of them separately in FIR filter. The parallel multipliers like radix2 and

radix4 modified booth multiplier does the computations using lesser adders and lesser iterative steps. As a

result of which they occupy less space as compared to the serial multiplier. This a very important criteria

because in the fabrication of chips and high performance systems requires components which are as small as

possible. Low power consumption and smaller area are the most important criteria for the fabrication of DSP

systems and high performance systems. Optimizing the speed and area of the multiplier is a major design issue.

However, area and speed are usually conflicting constraints improving speed results mostly in larger areas.

This is to determine the best solution to this problem by comparing a few multipliers. The paper gives the

analysis of comparison of power consumption of all the multipliers & we find that serial multipliers consume

more power. So where power is an important criteria parallel multipliers like booth multipliers are preferred to

serial multipliers.

Index Terms: Multipliers, FPGA, DSP, Embedded and VHDL

I. Introduction
Multipliers are key components of many high performance systems such as FIR filters,

microprocessors, digital signal processors, etc. A system’s performance is generally determined by the

performance of the multiplier because the multiplier is generally the slowest clement in the system.

Furthermore, it is generally the most area consuming. Hence, optimizing the speed and area of the multiplier is a

major design issue. However, area and speed are usually conflicting constraints so that improving speed results

mostly in larger areas. As a result, a whole spectrum of multipliers with different area-speed constraints have

been designed with fully parallel. Multipliers at one end of the spectrum and fully serial multipliers at the other

end. In between are digit serial multipliers where single digits consisting of several bits are operated on. These

multipliers have moderate performance in both speed and area. However, existing digit serial multipliers have

been plagued by complicated switching systems and/or irregularities in design. Radix 2^n multipliers which

operate on digits in a parallel fashion instead of bits bring the pipelining to the digit level and avoid most of the

above problems. They were introduced by M. K. Ibrahim in 1993. These structures are iterative and modular.

The pipelining done at the digit level brings the benefit of constant operation speed irrespective of the size of’

the multiplier. The clock speed is only determined by the digit size which is already fixed before the design is

implemented. Many DSP applications demand high throughput and real-time response, performance constraints

that often dictate unique architectures with high levels of concurrency. DSP designers need the capability to

manipulate and evaluate complex algorithms to extract the necessary level of concurrency. Performance

constraints can also be addressed by applying alternative technologies. A change at the implementation level of

design by the insertion of a new technology can often make viable an existing marginal algorithm or

architecture.

The VHDL language supports these modeling needs at the algorithm or behavioral level, and at the

implementation or structural level. It provides a versatile set of description facilities to model DSP circuits

from the system level to the gate level. Recently, we have also noticed efforts to include circuit-level

modeling in VHDL. At the system level we can build behavioral models to describe algorithms and

architectures. We would use concurrent processes with constructs common to many high-level languages,

such as if, case, loop, wait, and assert statements. VHDL also includes user-defined types, functions,

procedures, and packages." In many respects VHDL is a very powerful, high-level, concurrent programming

language. At the implementation level we can build structural models using component instantiation

statements that connect and invoke subcomponents. The VHDL generate statement provides ease of block

replication and control. A dataflow level of description offers a combination of the behavioral and structural

levels of description. VHDL lets us use all three levels to describe a single component. Most importantly, the

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 59 | Page

standardization of VHDL has spurred the development of model libraries and design and development tools at

every level of abstraction. VHDL, as a consensus description language and design environment, offers design

tool portability, easy technical exchange, and technology insertion

II. Design of Filter
Digital filters are very important part of DSP. Infact their extraordinary performance is one of the key

reasons that DSP has become so popular. Filters have two uses: signal separation and signal restoration. Signal

separation is needed when the signal has been contaminated with interference, noise or other signals. For

example imagine a device for measuring the electrical activity of a baby’s heart (EKG) while in the womb. The

raw signal will be likely to be corrupted by the breathing and the heartbeat of the mother. A filter must be used

to separate these signals so that they can be individually analyzed.

Signal restoration is used when the signal has been distorted in some way. For example, an audio

recording made with poor requirement may be filtered to better represent the sound as it actually occurred.

Another example is of debluring of an image acquired with an improper focused lens, or a shaky camera.

These problems can be attacked with either digital or analog filters. Analog filters are cheap, fast and

have a large dynamic range both in amplitude and frequency. Digital filters in comparison are vastly superior in

the level of performance that can be achieved. Digital filters can achieve thousands of times better performance

than an analog filter. This makes a dramatic difference in how filtering problems are approached. With analog

filters, the emphasis is on handling limitations of the electronics such as the accuracy and stability of the

resistors and capacitors. In comparison digital filters are so good that the performance of the filter is frequently

ignored.

The emphasis shifts to the limitations of the signals and the theoretical issues regarding their

processing. It is common in DSP to say that a filter input and output signals are in time domain. This is because

signals are usually created by sampling at regular intervals of time. But this is not the only way sampling can

take place. The second most common way of sampling is at equal intervals in space. For example imagine taking

simultaneous readings from an array of strain sensors mounted at one centimeter increments along the length of

an aircraft wing. Many other domains are possible; however, time and space are by far the most common. Then

you see the term time domain in DSP, remember that it may actually refer to samples taken over time, or it may

be a general reference to any domain that the samples are taken in.

Every linear filter has an impulse response, a step response and a frequency response. Each of these

responses contains complete information about the filter, but in a different form. If one of three is specified, the

other two are fixed and can be directly calculated. All three of these representations are important, because they

describe how the filter will react under different circumstances. The most straightforward way to implement a

digital filter is by convolving the input signal with the digital filter’s impulse response. All possible linear filters

can be made in this manner.

When the impulse response is used in this way, filters designers give it a special name: the filter kernel.

There is also another way to make digital filters, called recursion. When a filter is implemented by a

convolution, each sample in the output is calculated by weighting the samples in the input, and adding then

together. Recursive filters are an extension of this, using previously calculated values from the output, besides

points from the input. Instead of using a filter kernel, recursive filters are defined by a set of recursion

coefficients. For now the important point is that all linear filters have an impulse response, even if you don’t use

it to implement the filter. To find the impulse response of a recursive filter, simply feed in the impulse and see

what comes out. The impulse responses of recursive filters are composed of sinusoids that exponentially decay

in amplitude. In principle, this makes their impulse responses infinitely long. However the amplitude eventually

drops below the round off noise of the system, and the remaining samples can be ignored. Because of these

characteristics, recursive filters are also called Infinite impulse response or IIR filters. In comparison, filters

carried out by convolution are called Finite impulse response or FIR filters.

The impulse response is the output of a system when the input is an impulse. In this same manner, the

step response is the output when the input is a step. Since the step is the integral multiple of the impulse

response. This provides two ways to find the step response: (1) feed a step waveform into the filter and see what

comes out. (2) Integrate the impulse response. The frequency response can be found out by taking the DFT of

impulse response.

Time domain Parameters

It may not be obvious why the step response is of such concern in time domain filters. You may be

wondering why the impulse response isn’t the important parameter. The answer lies in the way that the human

mind understands and processes information. Remember that the step, impulse and frequency responses all

contain identical information, just in different arrangements. The step response is useful in time domain analysis

because it matches the way humans view the information contained in the signals.

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 60 | Page

For example, suppose you are given a signal of some unknown origin and asked to analyze it. The first

thing you will do is divide the signal into regions of similar characteristics. You can’t stop from doing this; your

mind will do that automatically.

Some of the regions may be smooth; others may have large amplitude peaks; others may be noisy. This

segmentation is accomplished by identifying the points that separate the regions. This is where the step function

comes in. the step function is the purest way of representing a division between two dissimilar regions. It can

mark when an event starts or when an event ends. It tells you that whatever is on the right.

This is how the human mind views time domain information: a group of step functions dividing the

information into region of similar characteristics. The step response, in turn, is important because it describes

how the dividing lines are being modified by the filter.

Frequency domain parameters

The purpose of the filters is to allow some frequencies to pass unaltered, while completely blocking

other frequencies. The pass band refers to those frequencies that are passed, while stop band contains those

frequencies that are blocked. The transition band is between. A fast roll-off means that the transition band is very

narrow. The division between the pass band and transition band is called the cut off frequency. In analog filter

design ,the cut off frequency is usually defined are less standardized, and it is common to see 99%,90%,70.7%

and 50% amplitude levels defined to be the cut off frequency.

Types of filters

High pass, band pass and band reject filters are designed by starting with a low pass filter, and then

converting it into the desired response. For this reason, most discussions on filter design only give examples of

low pass filters.

III. Adders Design
In electronics, an adder is a digital circuit that performs addition of numbers. In modern computers

adders reside in the arithmetic logic unit (ALU) where other operations are performed. Although adders can be

constructed for many numerical representations, such as Binary-coded decimal or excess-3, the most common

adders operate on binary numbers. In case where two's complement is being used to represent negative numbers

it is trivial to modify an adder into an adder-subtracter

Types of adders

For single bit adders, there are two general types. A half adder has two inputs, generally labelled A and

B, and two outputs, the sum S and carry C. S is the two-bit XOR of A and B, and C is the AND of A and B.

Essentially the output of a half adder is the sum of two one-bit numbers, with C being the most significant of

these two outputs. The second type of single bit adder is the full adder. The full adder takes into account a carry

input such that multiple adders can be used to add larger numbers. To remove ambiguity between the input and

output carry lines, the carry in is labelled Ci or Cin while the carry out is labelled Co or Cout.

A half adder is a logical circuit that performs an addition operation on two binary digits. The half adder

produces a sum and a carry value which are both binary digits.

Half adder circuit diagram

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 61 | Page

Full adder circuit diagram

A full adder is a logical circuit that performs an addition operation on three binary digits. The full adder

produces a sum and carry value, which are both binary digits.

A full adder can be constructed from two half adders by connecting A and B to the input of one half

adder, connecting the sum from that to an input to the second adder, connecting Ci to the other input and or the

two carry outputs. Equivalently, S could be made the three-bit xor of A, B, and Ci and Co could be made the

three-bit majority function of A, B, and Ci. The output of the full adder is the two-bit arithmetic sum of three

one-bit numbers.

IV. Design of Multipliers
Binary Multiplier

A Binary multiplier is an electronic hardware device used in digital electronics or a computer or other

electronic device to perform rapid multiplication of two numbers in binary representation. It is built using binary

adders.

The rules for binary multiplication can be stated as follows

1. If the multiplier digit is a 1, the multiplicand is simply copied down and represents the product.

2. If the multiplier digit is a 0 the product is also 0. For designing a multiplier circuit we should have circuitry to

provide or do the following four things:

1. It should be capable of identifying whether a bit 0 or 1.

2. It should be capable of shifting left partial products.

3. It should be able to add all the partial products to give the

 products as sum of partial products.

4. It should examine the sign bits. If they are alike, the sign of the product will be a positive, if the sign bits are

opposite product will be negative. The sign bit of the product stored with above criteria should be displayed

along with the product.

From the above discussion we observe that it is not necessary to wait until all the partial products have

been formed before summing them. In fact the addition of partial product can be carried out as soon as the

partial product is formed.

Notations:

ı a – multiplicand

ı b – multiplier

ı p – product

Binary multiplication (eg n=4)

p=a×b

an−1 an−2…..a1a0

bn−1bn−2…...b1b0

p2 n−1 p2 n−2…..p1 p0

x x x x a

x x x x b

x x x x b0a20

x x x x b1a21

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 62 | Page

x x x x b2a22

x x x x b3a23

x x x x x x x x p

Basic Hardware Multiplier

Multiply Accumulate Circuits

Multiplication followed by accumulation is a operation in many digital systems, particularly those highly

interconnected like digital filters, neural networks, data quantisers, etc.

One typical MAC (multiply-accumulate) architecture is illustrated in figure. It consists of multiplying 2

values, then adding the result to the previously accumulated value, which must then be restored in the registers

for future accumulations. Another feature of MAC circuit is that it must check for overflow, which might

happen when the number of MAC operation is large.

This design can be done using component because we have already design each of the units shown in

figure. However since it is relatively simple circuit, it can also be designed directly. In any case the MAC

circuit, as a whole, can be used as a component in application like digital filters and neural networks

Architecture of A Radix 2^n Multiplier

The architecture of a radix 2^n multiplier is given in the Figure. This block diagram shows the

multiplication of two numbers with four digits each. These numbers are denoted as V and U while the digit size

was chosen as four bits. The reason for this will become apparent in the following sections. Each circle in the

figure corresponds to a radix cell which is the heart of the design. Every radix cell has four digit inputs and two

digit outputs. The input digits are also fed through the corresponding cells. The dots in the figure represent

latches for pipelining. Every dot consists of four latches. The ellipses represent adders which are included to

calculate the higher order bits. They do not fit the regularity of the design as they are used to “terminate” the

design at the boundary. The outputs are again in terms of four bit digits and are shown by W’s. The 1’s denote

the clock period at which the data appear.

Architecture of Radix 2^n Multiplier

Booth Multiplier

The decision to use a Radix-4 modified Booth algorithm rather than Radix-2 Booth algorithm is that in

Radix-4, the number of partial products is reduced to n/2. Though Wallace Tree structure multipliers could be

used but in this format, the multiplier array becomes very large and requires large numbers of logic gates and

interconnecting wires which makes the chip design large and slows down the operating speed.

Booth Multiplication Algorithm

Booth Multiplication Algorithm for radix 2

Booth algorithm gives a procedure for multiplying binary integers in signed –2’s complement representation.

I will illustrate the booth algorithm with the following example:

Example, 2tenx (- 4)ten

0010two* 1100two

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 63 | Page

Step 1: Making the Booth table

I. From the two numbers, pick the number with the smallest difference between a series of consecutive numbers,

and make it a multiplier.

i.e., 0010 -- From 0 to 0 no change, 0 to 1 one change, 1 to 0 another change, so there are two changes on this

one

1100 -- From 1 to 1 no change, 1 to 0 one change, 0 to 0 no change, so there is only one change on this one.

Therefore, multiplication of 2 x (– 4), where 2ten(0010two) is the multiplicand and (– 4)ten(1100two) is the

multiplier.

II. Let X = 1100 (multiplier)

Let Y = 0010 (multiplicand)

Take the 2’s complement of Y and call it –Y

–Y = 1110

III. Load the X value in the table.

IV. Load 0 for X-1 value it should be the previous first least significant bit of X

V. Load 0 in U and V rows which will have the product of X and Y at the end of operation.

VI. Make four rows for each cycle; this is because we are multiplying four bits numbers.

Step 2: Booth Algorithm

Booth algorithm requires examination of the multiplier bits, and shifting of the partial product. Prior to the

shifting, the multiplicand may be added to partial product, subtracted from the partial product, or left unchanged

according to the following rules:

Look at the first least significant bits of the multiplier “X”, and the previous least significant bits of the

multiplier “X - 1”.

I 0 0 Shift only

1 1 Shift only.

0 1 Add Y to U, and shift

1 0 Subtract Y from U, and shift or add (-Y) to U and shift

II Take U & V together and shift arithmetic right shift which preserves the sign bit of 2’s complement number.

Thus a positive number remains positive, and a negative number remains negative.

III Shift X circular right shift because this will prevent us from using two registers for the X value.

Repeat the same steps until the four cycles are completed

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 64 | Page

We have finished four cycles, so the answer is shown, in the last row of U and V which is 11111000 two Booth

multiplication algorithm for radix 4 one of the solutions of realizing high speed multipliers is to enhance

parallelism which helps to decrease the number of subsequent calculation stages. The original version of the

Booth algorithm (Radix-2) had two drawbacks. They are: (i) the number of add subtract operations and the

number of shift operations becomes variable and becomes inconvenient in designing parallel multipliers. (ii)

The algorithm becomes inefficient when there are isolated 1’s. These problems are overcome by using modified

Radix4 Booth algorithm which scan strings of three bits with the algorithm given below:

1) Extend the sign bit 1 position if necessary to ensure that n is even.

2) Append a 0 to the right of the LSB of the multiplier.

3) According to the value of each vector, each Partial Product will be 0, +y, -y, +2y or -2y.

The negative values of y are made by taking the 2’s complement and in this paper Carry-look-ahead (CLA) fast

adders are used. The multiplication of y is done by shifting y by one bit to the left. Thus, in any case, in

designing an n-bit parallel multipliers, only n/2 partial products are generated.

V. Results & Discusions

Array Multiplier

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 65 | Page

Radix 2 Booth Multiplier

Radix 4 Booth Multiplier

This paper gives a clear concept of different multiplier and their implementation in tap delay FIR filter.

We find that the parallel multipliers are much better than the serial multiplier. We concluded this from the result

of power consumption and the total area. In case of parallel multipliers, the total area is much less than that of

serial multipliers. Hence the power consumption is also less. This is clearly depicted in our results. This speeds

up the calculation and makes the system faster.

While comparing the radix 2 and the radix 4 booth multipliers we found that radix 4 consumes lesser

power than that of radix 2. This is because it uses almost half number of iteration and adders when compared to

radix 2.

When all the three multipliers were compared we found that array multipliers are most power

consuming and have the maximum area. This is because it uses a large number of adders. As a result it slows

down the system because now the system has to do a lot of calculation.

Multipliers are one the most important component of many systems. So we always need to find a better

solution in case of multipliers. Our multipliers should always consume less power and cover less area. So

through our project we try to determine which of the three algorithms works the best. In the end we determine

that radix 4 modified booth algorithm works the best.

VI. Conclusion
In this paper, designed three different type of multipliers using shift and add method, radix2 and radix4

modified booth multiplier algorithm. We used different type of adders like sixteen bit full adder in designing

those multiplier. Then we designed a 4 tap delay FIR filter and in place of the multiplication and additions we

implemented the components of different multipliers and adders. Then we compared the working of different

multipliers by comparing the power consumption by each of them. The result of our project helps us to choose a

better option between serial and parallel multiplier in fabricating different systems. Multipliers form one of the

most important component of many systems. So by analysing the working of different multipliers helps to frame

a better system with less power consumption and lesser area.

Performance Analysis of Different Multipliers for Embedded and DSP Applications

DOI: 10.9790/4200-0603015866 www.iosrjournals.org 66 | Page

References
[1]. Naveen Kumar, Manu Bansal, Navnish Kumar” VLSI Architecture of Pipelined Booth Wallace MAC unit” International Journal of

Computer Application(0975-8887)

[2]. Fayed, Ayman A., Bayoumi, Magdy A., “A Merged Multiplier-Accumulator for high speed signal processing applications”, IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp 3212 -3215, 2002.

[3]. Abenet Getahun “Booth Multiplication Algorithm” Fall 2003 CSCI 401. [4] Sarita Singh, Sachin Mittal”VHDL Design and

implementation for optimum delay and area for Multiplier and Accumulator unit by 32 bit Sequential Multiplier” International
Journal of engineering Trends and Technology Volume3 issue 5-2012

[4]. N. Honarmand, M.R.Javaheri, N.SedaghatiMokhtari and A. Afzali-Kusha “PowerEfficient Sequential Multiplication Using Pre-

computation” ISCAS 2006.
[5]. S.Shafiulla, Syed Jahangir Badashah ”Design and Implementation of Radix 4 based high speed Multiplier for ALU’s using minimal

partial products” International Journal of Advances in Engineering and Technology.

[6]. S. Jagadeesh, S. Venkata Chary“Design of Parallel Multiplier-Accumulator based on Radix-4 Modified Booth Algorithm with
SPST” International Journal of Engineering Research and Application.

[7]. Priya stalin, anuradha, k ranjithkumar, n vaishnav, d vigneswara, s t santhosh “high speed multiplier with pipelining” International

Journal of VLSI and Embedded Systems-IJVES .
[8]. Navdeep Kaur, Rajeev Kumar Patial “Implementation of Modified Booth Multiplier using Pipeline Technique on FPGA”

International Journal of Computer Applications (0975 – 8887).

[9]. K. Srishylam, Prof. Syed Amjad Ali, M.Praveena “ Implementation of Hybrid CSA, Modified Booth Algorithm and Transient

power Minimization techniques in DSP/Multimedia Applications” International Journal of Engineering Research and Applications

(IJERA) .

[10]. Shanthala S, S. Y. Kulkarni “VLSI Design and Implementation of Low Power MAC Unit with Block Enabling Technique”
European Journal of Scientific Research

[11]. Iffat Fatima “Analysis of Multipliers in VLSI” Journal of Global Research in Computer Science.

