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Abstract: With the rapid improvement in data exchange, large memory devices have come out in recent past. 

The operational controlling for such large memory has became a tedious task due to faster, distributed nature of 

memory units. In the process of memory accessing it is observed that data written or fetched are often encounter 

with fault location and faulty data are written or fetched from the addressed locations. In real time applications, 

this error cannot be tolerated as it leads to variation in the operational condition dependent on the memory 

data. Hence, It is required to have an optimal controlling fault tolerance in content addressable memory. In this 

paper, we present an approach of fault tolerance approach by controlling the fault addressing overhead, by 

introducing a new addressing approach using redundant control modeling of fault address unit. The presented 

approach achieves the objective of fault controlling over multiple fault location in different dimensions with 

redundant coding.  

Index terms: Fault controlling, content addressable memory, recurrent address location  

 

I. Introduction 
Due to rapid growth in VLSI technology, it is possible to integrate several billions of transistors on a single 

chip. Process variations causes failures like read failure, access failure, hold stability failures and write failure. As part 

of the development of VLSI technology, System-on chip (SoC) is developed which is capable to integrate a entire 

system on a single chip. It may possible to integrate many processor cores with embedded memory, interconnect 

infrastructure and application specific circuits embedded on a single chip which reduces the size of the system from a 

board to chip. SoCs gives high performance and higher reliability at low cost with low power consumption. According 

to international technology roadmap for semiconductor (ITRS) over 90% of the chip is occupied by embedded 

memories in System-on chip (SOC). Testing is a measurement of defects and quality level.A circuit is tested once and 

for all, with the hope that once the circuit is verified to be fault free it would not failduring its expected life-time, it is 

called off-line testing. However, this assumption does not hold for modern day ICs,based on deep sub-micron 

technology, because they may develop failures even during operation within expected lifetime. To cater to this 

problem sometimes redundant circuitry are kept on-chip which replace the faulty parts. Toenable replacement of 

faulty circuitry, the ICs are tested before each time they startup. If a fault is found, a part ofthe circuit (having the 

fault) is replaced with a corresponding redundant circuit part (by re-adjusting connections).Testing a circuit every time 

before they startup, is called Built-In-Self-Test (BIST). Once BIST finds a fault, thereadjustment in connections to 

replace the faulty part with a fault free one is a design problem.BIST reduces the time to test a chip. Inaddition, the 

aggressive design rules make the memory arrays prone todefects [3]. Therefore, the overall SoC yield is dominated by 

the memory yield, and optimizing the memory yield plays acrucial role in the SoC environment. To improve the yield, 

memory arrays are usually equipped with spare elements, and external testers have been used to test the memory 

arrays and configure the spare elements. However,in the SoC environment, the overall test time is 

prohibitivelyincreased if the test response data from the memory arrays aresent to the external testers. On the other 

hand, the SoC environment,combined with shrinking technology, allows us more areafor on-chip test infrastructure at 

lower cost than before, whichmakes feasible a variety of built-in self-test (BIST) and built-inself-repair (BISR) 

techniques for reducing the test time.In this paper, design of dynamic Built-in Self-Repair for Embedded SRAM is 

proposed. Built-in Self-repair is used to enhance the yield for embedded memories for effective memory diagnosis and 

fault analysis. BISR mainly consists of Built-in Self-test, Built-in fault-analysis and Multiplexer(MUX). In the 

proposed BISR, each fault can be saved only once .The main aim of the proposed BISR to repair a fault using 

redundancy by forming one–to-one mapping of a faulty location to redundancy location. By dynamic redundancy 

architecture we can repair more number of faults by replacing even single bit fault with single bit redundancy bit. To 

present the stated approach the rest of the paper is organized as follows, section II outlines the past approaches. The 

conventional model of BISR for fault tolerance is outlined in section III. The proposed redundant BISR is shown in 

section IV. The experimental results are illustrated in section v and aconclusionis outlined in section VI. 
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II. Content Addressable Memory 
CAM-intensive systems today rely on increasingly complex and computationally intensive 

applications.  Many CAM systems must meet extremely rigorous speed goals, since they operate on lengthy 

segments of real-world signals in real-time. Another key characteristic of a CAM system is its sample rate: the 

rate at which samples are consumed, processed, or produced. Combined with the complexity of the algorithms, 

the sample rate determines the required speed of the implementation technology. The sample rates required for 

CAM systems vary over many orders of magnitude, depending upon the types of signals being manipulated. In 

many cases, sample rates are quite high relative to the basic clock cycle time of the available hardware 

technology. An additional challenge in CAM design verification is the need for realistic test data. The 

verification of CAM application often requires complex, realistic test signals. The development of CAM system 

begins with the establishment of requirements for the system. These requirements may include power, size, 

weight, bandwidth, and signal quality. During the design development, the designer is mostly concerned with 

exploring approaches to solve the problems posed by the specifications at an abstract level. At the algorithm 

development level, the designer must be able to specify and experiment with both the control behavior and the 

processing behavior of the application. System architecture use to describe the overall selection and organization 

of the main hardware and software components in a system is then a critical task. In selecting a system 

architecture, the designer's inputs typically include the algorithms and other functionality to be implemented. 

The design of system architecture is often the most important step in the design process in terms of its influence 

on the product's performance, cost and design time. Signal processing software is perhaps the most important 

part of CAM system software. Many CAM systems are implemented using multitasking, which requires a real-

time operating system to coordinate the execution of multiple tasks.  CAM system involve the development of 

new hardware-particularly those systems targeted at cost-sensitive, high-volume applications.  System 

integration has to take place throughout the design process. As the designs are refined, the integration is also 

refined. Starting system integration early in the design process and refining the integration as design proceeds 

paves the way for relatively straightforward final system integration. The current CAM systems, unlike the 

general-purpose memory, use a non-uniform addressing model in which the primary components of the memory 

system is the DRAM and dual tag less SRAMs are referenced through completely separate segments of the 

address space. The recent trend of programming CAMs in high-level languages. In many of today’s high-

performance CAMs this non-uniform model is being replaced by a uniform model a transparent organization 

like that of most general-purpose systems, in which all memory structures share the same address space as the 

DRAM system. In such a memory organization, one must replace the CAM’s tagless SRAMs with something 

resembling a general-purpose cache. The dual-channel SRAM design provides a large amount of fast storage 

while supporting guaranteed single-cycle access to both operands of a typical instruction (e.g. the product terms 

of a multiply accumulate). The SRAMs are tagless because they are not transparent to the programmer: CAMs 

offer segmented memory spaces where different physical memory structures (SRAM0, SRAM1, DRAM, ROM, 

etc.) are explicitly indicated by corresponding sets of data addresses. 

 

II. Fault Tolerant In Memory 
In order to improve fabrication yield and in-field reliability,built-in self-repair (BISR) is considered a 

promising solution.There are many BISR/built-in redundancy analysis (BIRA) algorithms and architectures 

proposed for test and repair ofembedded memories in the past [3]–[12], [18]–[24]. In [3], aBISR scheme with 2-

D redundancy structure is proposed. Theproposed BISR circuit has a low area overhead about 4.6% for an 8K × 

64 static random-access memory (SRAM). In [4], acomprehensive exhaustive search BIRA scheme for 

embeddeddynamic random-access memories is proposed which can achieve optimal repair rates. However, the 

hardware overhead (HO) required to implement this algorithm is very high. In [5], Wey and Lombardi presented 

a branch-and-bound techniquewith early screening in the repair process. The least number of required spares can 

be modeled by a bipartite graph.In [6] and [7], BISR techniques for embedded memories containing random 

defects and cluster faults are proposed, respectively. Instead of the traditional spare row (SR)/sparecolumn (SC) 

redundancy mechanisms, block-based replacement techniques are used. Moreover, the proposed 

redundancymechanisms can be used locally or globally. However, for systemchips containing multiple 

heterogeneous memory cores,BISR solutions become more complicate and difficult forimplementation. It is 

inevitable to seek for efficient methodologiesfor repairing multiple memory cores. In [9]–[11], areconfigurable 

BISR scheme for repairing multiple RAMsis proposed. However, the traditional redundant mechanisms 

(SRs/SCs) are used. 
 

III.  Proposed Address Governing In Cam 
Fault tolerance is made to achieve a fault free data access in/from memory units. The BISR logic is 

used as a monitoring and processing block in memory application for fault tolerance. The conventional model of 

BISR operates in two modes of operation. The operational modes for an SRAM unit are stated in table 1. The 
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BISR unit operates on test mode or Access mode operation. In the test mode operation, the memory undergoes a 

fault diagnosis for stuck at zero, or stuck at 1 fault testing.In access mode, SRAM users can decide whether the 

BISR is used base on their needs. If the BISR is needed, the Normal-Redundant words will be taken as 

redundancy to repair fault. If not, they can be accessed as normal words. 

Table 1. SRAM Operation Modes 
Modes Repair Selection Operation 

Test Mode  
(tes_h=1) 

Default: repair 
(bisr_h=1) 

Access normal words. 
Repair faults and test. 

Don’t repair 

(bisr_h=0) 

Access normal words 

Test only 

Access Mode 

 (test_h=0) 

Repair 

(bisr_h=1) 

Access normal words. 

Repair faults and write/read SRAM 

Don’t repair 

(bisr_h=0) 

Access normal Redundant and normal words. 

Write/read SRAM only 

 

In the operation of fault condition, each fault address is stored only once into a Fault address memory. 

In the detection process, faulty addresses are detected in more than one step of match operation. Figure 1 shows 

the flows of storing fault addresses. BIST detects whether the current address is faulty. If it is, the BISR checks 

whether the Fault-address-Memory overflows. If not, the current fault address should be compared with those 

already stored in Fault-address-Memory. Only if the faulty address isn’t equal to any address in Fault-address-

Memory, it can be stored. To simplify the comparison, write a redundant address into Fault-address-Memoryas 

background. In this case, the fault address can be compared with all the data stored in Fault-address-Memoryno 

matter how many fault addresses have been stored. At last, the BISR strategy is high-speed. As shown in Figure 

1, once a fault address is stored in Fault-address-Memory, it points to allfault address. The fault addresses are 

retrieved by processing a one-to-one mapping. Using this method, the BISR operates on all the fault location in 

the address memory, which is an exhaustive search operation.  

 

 
Figure.1: Flows of Storing Fault Addresses 

 

The fault diagnosis in such case takes a larger time for reading and large address memory locations for storage. 

This overhead leads to low operation efficiency of memory application and result in high power consumption. 

To overcome these issues, a redundant fault addressing logic is suggested.  

 

IV. Redundant Fault Address Mapping  
To develop the suggested redundant fault address mapping, a block repair fault tolerant architecture is 

proposed for main memories (SRAM). In this approach, the main memory cell array will be divided into blocks 

i.e., 4 bits as a block.This main memory is subjected to test to find the faults.Then the main memory will be 

repaired by allocating spare memory to the faulty blocks of main memory. The fault diagnosis for the suggested 

approach is carried out in fault testing and fault mapping operation. 
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1. Fault testing 

In the fault testing operation, the test memory is filled with all 1’s the output dout is compared with 1’s in block 

wise so that if any mismatch is found the comparator will set the status signal to be 1 to indicate the fault in the 

memory location. Then the address of the faulty block memory location is stored in a register. Similarly the 

main memory is tested for stuck_at_1 faults by filling all 0’s into the main memory and comparing it with all 0’s 

in block wise.The faulty addresses of the main memory are buffered and stored intothe fault address memory. 

 

2. Fault Mapping  

When the test memory is accessed, the address of the memory location to write/read is compared with 

the address in the faulty address register. If a match is found then data will be sent to spare memory while read 

operation and the data will be retrieved from spare in read mode. The proposed approach of memory fault 

testing is shown in figure 2. 

 

 
Figure 2: Proposed redundant address map for BISR 

 

The fault tolerance system operates on the detection of fault location, In the convention fault-address-memory 

with each fault detected in the test process buffer the fault location in the temporary fault address register of the 

address memory. In such coding, the fault location are represented as shown in figure 3,  

 

 
Figure 3: illustration of fault address memory in conventional BISR 

 

To overcome the issue of redundancy, a fault redundant counter is set. The counter records the observed faults 

per location and stores the fault count in fault address memory. The suggested realigned memory unit is as 

shown in table.2. 

 

Table.2 Proposed redundant fault address memory 
Fault Row Fault count Faultcolumn 

3 3 1,3,5 

8 1 4 

9 2 1,3 

13 1 6 

17 1 8 

18 1 1 
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The operation of the suggested approach under data fetching with fault address logic is presented in figure 4. 

 

 
Figure 4: Operational flow for proposed redundant coding 

 

At each of the location reading operation, a location address is requested, which is passed to the fault 

address memory to test for faulty location. For a true match for fault location, the count value is observed and all 

the registered address columns are fetched form the sparse memory to formulate the data byte. In such case, the 

fault recovery is observed to be performed in 3 match cycles in comparison to 6 match cycles in conventional 

fault detection.The operation of fault detection is as illustrated below. A fault memory evaluation on the stated 

memory logic as shown in figure 6 is performed. 

 

 
Figure 5: Memory unit with fault locations  

 

 In the operation the fault testing is carried out and the testing result is as shown below, No of spares are 3. 

 

Table.1, observations on the selection over bit, block and word level 
 Bit Block Word 

0th row 2 cells 2 blocks Full word 
1th row 1 cell 1 block Full word 

2th row ---------------------No fault--------------------------- 

3throw 2 cells 1 block Full word 

4th row 1 cell 1 block Not repeated 

5th row 5 cells 2 blocks Not repeated 
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V. Experimental Results 
To evaluate the operational functionality and implementation feasibility, a simulation for the proposed approach 

is made. The obtained results are as illustrated below. 

 

Case 1:Redundancy Added At in Block Level 

 

 

 

 



Robust Fault Tolerance in Content Addressable Memory Interface 

DOI: 10.9790/4200-0703015563                             www.iosrjournals.org                                                 61 | Page 

 
 

Case 2: Redundancy Added At in Bit Level 

 
 

Case 3:Redundancy Added At in Word Level 
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Table.3 Comparison of Observations are made for a 6/16 memory 
 Bit Block Word 

Utilization of memory (No. of cells) 80 68 16 

No. of spares used 10 7 3 

Time taken to complete the simulation 20.1us 6670us 3192us 

No of BELs 2926 1800 1127 

Frequency(Hz) 83.289 93.868 99.086 

 

As show in the table, we have faults in 0
th

,1
st
 ,3

rd
 ,4

th
 and 5

th
 rows.  We have taken 3 spares to repair the 

memory. So in order to repair, the memory in word level, only 3 rows of memory are being repaired and the 

other 2 rows are getting faulty data. The main disadvantage is that even for a single cell fault in the memory a 

full row     is being replaced where memory is getting waste for a single cell. If we consider the case of repair in 

bit level, each and every cell of memory is being repaired but here the time taken to repair the memory is high 

and the hardware used to repair is more, this we can see in the table given below. In block level of repairing 

memory, we can compensate the disadvantages of both word and bit level, instead of full row being replaced for 

a single fault in the cell only a block is replaced, and if there are more than 2 cells faulty in a block, then that is 

very advantageous to replace that full block Into a spare block. The hardware and time taken to repair are also 

less than that of bit wise repairing. A fault tolerant mechanism for memory operation is developed.The 

simulation observations over a memory location with stuck_at_0 & stuck_at_1 is developed and tested.A spare 

logic is developed with addressing logic to overcome the faults in memory.The data read are found to be exactly 

same as input data with fault locations. The observations were developed for bit, block & word selections. 

 

VI. Final Results 
RTL Top Level Output File Name     : scrub.ngr 

Top Level Output File Name         : scrub 

Output Format                      : NGC 

Optimization Goal                  : Speed 

Keep Hierarchy                     : NO 

Design Statistics 

# IOs                              : 24 

Cell Usage : 

# BELS                             : 643 

#      GND                         : 1 

#      INV                         : 8 

#      LUT1                        : 66 

#      LUT2                        : 32 

#      LUT2_D                      : 3 

#      LUT3                        : 92 

#      LUT3_D                      : 4 

#      LUT3_L                      : 1 

#      LUT4                        : 169 

#      LUT4_D                      : 35 

#      LUT4_L                      : 19 

#      MUXCY                       : 92 

#      MUXF5                       : 43 

#      MUXF6                       : 15 

#      VCC                         : 1 

#      XORCY                       : 62 

# FlipFlops/Latches                : 262 

#      FD                          : 7 

#      FDE                         : 183 

#      FDRE                        : 64 

#      LDC_1                       : 1 

#      LDE_1                       : 7 

# Clock Buffers                    : 1 

#      BUFGP                       : 1 

# IO Buffers                       : 23 

#      IBUF                        : 16 

#      OBUF                        : 7 

   Minimum period: 38.340ns (Maximum Frequency: 26.082MHz) 
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   Minimum input arrival time before clock: 9.167ns 

   Maximum output required time after clock: 6.229ns 

 

VII. Conclusion 
Dynamic BISR strategy for SRAM with selectable redundancy has been presented in this paper. It is 

designed flexible that users can select operation modes of SRAM dynamically. More number of faults are 

detected using March –SS algorithm. The BIRA module can avoid storing fault addresses more than once and 

can repair fault address and bits quickly. Dynamic redundancy architecture repair more number of faults by 

replacing even single bit fault with single redundancy bit. 
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