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Abstract: There are various kinds of Network attacks often identifiable by the patterns of data they contain. More 

complex regular expressions that express these patterns need to be matched at a very high speed. Most hardware-

based approaches build the equivalent automata using minimal hardware resources to detect pattern variations. This 

paper explains the design, structure, and suitability of an optimized hardware-based automata implementation called 

Equivalence Class Direct Table Synthesis Nondeterministic Finite Automata (ECDRTS-NFA). The optimized approach 

described in this paper builds upon the earlier published version called Equivalence Class Descriptor 

Nondeterministic Finite Automata (ECD-NFA). The ECDRTS-NFA also uses an Equivalence Classification (EC) 

technique. However, the ECDRTS-NFA approach utilizes a newer form of table compression for its compressed ECs, 

called Equivalence Class Descriptors (ECDs). The ECDs then used to match against multi-character strings rather 

than the initial single character approach implemented in the ECD-NFA design. The optimized technique 

implemented in the ECDRTS-NFA further improves the matching speed of the design, while at the same time 

significantly reducing the overall resources required. This is achieved by taking full advantage of the Field 

Programmable Gate Array (FPGA) technology used for the hardware implementation. The design further provides 

higher throughput and support for quick updates, and clocks at 385.78 MHz, with a maximum throughput value of 

12.34 Gigabits per second (Gbps), depicting a 3.35% improvement over the next best rival design in this paper. 
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I. Introduction 
Most corporate network attacks target the privacy and confidentiality of both network clients and 

confidential documents. These attack patterns could be in any form ranging from spams, bugs, denial-of-service 

(DoS) attacks to malicious software such as: viruses, worms, Trojan horse, spyware, hybrid, droppers and 

blended threats [1]. As such, it is imperative for pattern matching approaches to find predefined patterns in a wide 

range of data streams [2] due to the vast number of data streaming through a network on daily basis.  A pattern set 

composed of thousands of patterns could grow to enforce new policies related to security issues [3].  

The matching processes performed could be regular expression or exact string matching. Exact string 

matching on a given packet can be performed during the process of deep packet inspection of the packet payload 

flowing into a given network [30], [32]. Exact string [16] matching techniques are weak against current patterns 

of attacks which are mostly in form of regular expressions [31]. Popular and current software tools [3], [4], [5] 

now use regular expressions or simply termed „regexps‟ to describe payload patterns [6]. Software solutions for 

regexp pattern matching have become inadequate in coping with the frequency of network attacks.  

There are some attempts to optimize regular expressions before automation, in order to reduce the 

memory footprint. The approach by [33] uses JavaScript Object Notation (JSON) to optimize definitions with 

large and complex patterns. The approach by [34] is a parallel implementation based on a content-addressable 

memory (CAM). The approach iteratively compares the portions of an input traffic stream with the already stored 

character strings within the CAM, and in each of the search cycles, it concurrently compares the character strings 

stored within the CAM against the input traffic stream. How quickly the state definitions grow remains a 

question. However, alternative solutions to software approaches are the hardware-based regexps pattern matching 

designs, which are based on hardware technologies such as the: Application-specific Integrated Circuits (ASICs) 

[8], Graphic Processing Units (GPUs) [9], [10], and Field-programmable Gate Arrays (FPGAs) [11], [12], [13], 

and [14].  

It is important to note that patterns matched by regexps can easily [7] be matched by an automaton, such 

as: Deterministic Finite Automata (DFA) or Nondeterministic Finite Automata (NFA). A variation of the former 

and the latter automata is called the hybrid DFA-NFA (hybrid-FA) [6]. Furthermore, with NFAs, each character 

to be matched is processed in O(n) time, and requires only O(n) memory. However, the NFA processing time 
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could be reduced to O(1), but require O(n
2
) memory [15] on FPGAs, and is achievable by exploiting it‟s fine-

grained parallelism, which is a great advantage over microprocessors. NFA-based approaches are fast becoming 

popular because of their memory conservation and ability utilize the re-configurability [19] structure that current 

FPGAs have. The regexps utilized in this paper design are drawn from rulesets found in the popular Snort 

community rulesets [30], [3].  

The EC technique described in [31] is retained for classifying all the input strings that have the same 

effect on the automata. The process also creates the relevant ECDs. The ECDs are then assigned and used to drive 

the automata. The matching process utilizes Block Random Access Memories (BRAMs) and is used to perform 

the software compression of all the raw data inputs into their various equivalence class vectors of next state 

transitions. The equivalence classes of vector states are then mapped to their respective ECDs accordingly [32]. 

This paper describes the novel table synthesis process of the compressed inputs on a target FPGA, which is built 

into the ECDRTS-NFA. The matching process also incurs minimal logic circuit cost in comparison to the other 

related approaches. The ECDRTS-NFA design is also quite suitable for implementation on any high speed network 

that is capable of performing multi-character matching. The most interesting thing about the ECDRTS-NFA design 

is that it capable of matching 32-bit characters at time, which is a real improvement over the initial 8-bit 

characters matched by the previous ECD-NFA [31].  

The remainder of this paper is organised thus: the related works is described and summarized in 

Section II. Section III describes the classification algorithm used for constructing the optimized ECDRTS-NFA 
machine, as well as the process used in creating n-byte ECDs, with n=1,2,4. Section III also explains the overall 

structure of the design and the results of the preliminary evaluation obtained for the ECDRTS-NFA design. 

Section IV compares and gives a brief analysis of the various related designs under consideration by using 

charts to evaluate the preliminary results obtained from Section III. Only FPGA-based implemented designs 

were considered and studied for comparison in this paper. Finally Section V discusses the conclusion and ideas 

for future work. 

 

II. Related Works 
The NFA logic described in [15] is a Finite State Machine (FSM) based approach that utilizes FPGA 

technology, and produces an output that is in form of a binary tree. Normally, a placed and routed netlist is built 

before generating configuration bits (bitstreams) at runtime in [31],[17]. The generated bitstream file is what is 

needed to program the FPGA device. In [15], while implementing NFAs as logic, it was realized that if all the 

source input Flip-Flops (FFs) to the destination input FFs [21] are on –transitions (epsilon transition), then the 

FFs can be eliminated without being implemented at all, and that could reduce the overall logic circuit size. This 

idea by [15] set the pace for several other approaches built upon reconfigurable [18][12] approaches.  

The design by [23] resolved the problem of prefix sharing used to avoid unnecessary repeated searches, 

attributed directly to shared infix and postfix sub-patterns. The design memorizes the path that the trigger signal 

based on specific constraints suitable for both exact string matching and complex regexp matching. Also, the 

approach in [35] uses filters for the regexp query, and is classified into positive factor and negative factor. This 

was achieved by reviewing three typical positive factors, which include: prefix, suffix, and necessary factor so 

as to show that negative factors can collaborate with positive factors to significantly improve the filtering 

ability. A Perl Compatible Regular Expression (PCRE) compiler that converts regexps from the Snort ruleset 

into PCRE opcodes was implemented in [24]. The opcodes are instructions for the software based PCRE engine 

defined in a file called pcre_internal.h, which is part of the PCRE Package. The compiler translates the PCRE 

opcodes into VHSIC Hardware Description Language (VHDL) codes necessary for parallel implementation in 

the FPGA. The design by [24] used a wider input bus through an SRAM interface, to increase the overall 

matching throughput.  

The design by [7] is an automatic architectural optimisation approach which spatially stacks regexps 

matching circuits (REMs). It then forms multiple character matching (MCMs) circuits. The MCMs are then 

grouped into clusters and marshaled onto a two dimensional staged and pipelined structure. The structure is 

aimed at improving the overall design clock speed [31]. However, the challenge with the architecture designed 

in [7] is that the process of distributing and buffering the character matching signals was initially error-prone 

and difficult to implement manually. To address the problem, the approach proposed in [25] used a heuristic that 

automatically marshaled k-REMs with total N-states into p-pipelines. The process selects and executes a 

function that compares each generated character class within each REM. The comparison is done against those 

that were previously collected in the BRAM, whenever a REM is to be added to an existing pipeline. The 

matching outputs [25] of each of the REMs are prioritized. The REM with higher priority is given to the lower-

indexed pipelines and stages for the sake of efficiency. The phase-wise pipeline structure of the approach is very 

important to understanding how the ECDRTS-NFA design in this paper operates.  

The concept of classification of character input strings [31] for driving the ECDRTS-NFA-based 

automata at a more appreciable clock rate is also very necessary in this paper. In addition, this paper design has 
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further reduced the number of BRAMs used for storing ECDs. Also, the function generators also termed look-up 

tables (LUTs) were synthesized to ease the translation of inputs for matching patterns of attacks [32]. This 

unique form of direct table synthesis technique, synthesizes the memory blocks into pure logic using only LUTs 

used for translating 2-byte and 4-byte tables of ECDs. Furthermore, the designs in [26], [27], [28] and [22] 

utilized a similar concept but implemented it for a DFA approach instead. The ECDRTS-NFA design like the 

ones in [32] and [28] takes a given number of regexps and generates the equivalent VHDL codes. The generated 

VHDL codes are essential for easing re-the configuration process of the design. Although, the higher number of 

characters (32-bits) consumed by ECDRTS-NFA machine has increased the throughput of matching, it was 

achieved at the cost of lower operational clock speed, which is a trade-off in such approaches. 

 

III. The ECDRTS-NFA Classification Algorithm 
The concept of equivalence classification can best be understood based on the definitions discussed in 

[29] and detailed in [31]. The Algorithm 1 discussed in [31] has been modified such that the m-character class 

of next state vectors, where 0<m<1 is increased to 0<m<4 to produce n-ECDs. Algorithm 2 and Figure 1, 

further describes the unique process of synthesizing memory into pure logic as LUTs.    

________________________________________________________________________________________ 

Algorithm 1: Construction of an n-ECD vectors of next states [31] 

________________________________________________________________________________________ 

INPUT: An n-state, m-character class ECDs. The input state is s. 

OUTPUT: An n-state ECD-NFA with the associated multi-byte table of compressed ECDs. 

BEGIN 
i. Read and parse the regexps to be constructed into the equivalent ECDRTS-NFA. 

ii. For  i < n, where i = 0,1,2,3....n-1, and n is the total number of states in the NFA. If the transition (link) 

from state si is a self-transition from state si to itself upon consuming a non-empty character, remove all 

such self-transitions  

iii. For  i < n, j < n and k < n, if the output of state si connects to the state inputs of some state sj upon 

consuming an empty string ( ), remove all such transitions ti,j linking state si to sj. Create a new transition 

that connects state si to states sj and sk where sk > sj on a non-empty input. 

iv. For  i < n, j < n and for each transition ti,j from a state si  to a state sj, scan through. Store all next states 

transited to on the same input, into a set of next states. Store all the different sets of next states into a single 

vector of sets of next states and assign a single input character class descriptor to them. 
v. Assign to each classified inputs created in (iv) ECDs, which are the class descriptors. The ECDs now 

represent the sets of vectors of next states for all character classes that trigger transitions from a state si to a 

state sj, where i < n, j < n. 

vi. Repeat steps (i) - (v) for  si, i < n and store all the sets of vectors of next states in a list of state vectors for 

 states si in the ECDRTS-NFA. 
vii. Once step (vi) is completed, the process of building the compressed table of ECDs begins. The process first 

performs the cross product computation of any two sets of vectors of next states vi and vj  i < n, j < n 

contained within the list of state vectors stored in (vi). Subsequently, all the similar vectors are merged to 

become a single vector. Recursively performing step (vi) – (vii) generates a 4-byte table of ECDs two 2-

byte tables. 
viii. Finally, exit the process after step (vii) and generate the VHDL file for the ECDRTS-NFA. The file is then 

uploaded to the XST VHDL synthesis tool for synthesis and implementation. 

 

END 

 

A. ECDRTS-NFA Circuit Block 

The design classification algorithm was described in [31] in more detail. The algorithm generates the 

required inputs (ECDs) using Algorithm 1 which  constructs vector of next states. The vectors of next states 

were formed and classified accordingly into 1-byte ECDs, 2-byte ECDs and 4-byte ECDs. For instance, the 

cross product between ECD 0 x ECD 1 = 3, causes the automata to transit to state 3 from state 1 on ECD input 

of 1 as seen in in the transition Table 1. Also, the cross product between ECD 1 x ECD 2 = ECD (1x2) = 4 as 

seen in in the transition Table 2 reflects the cross product between ECD (1x2) = 4. By recursively running the 

process again as explained in step (viii) of Algorithm 1 and merging the various state vectors seen in Table 2, 

the 4-byte ECDs are created as seen in Table 3 [31]. 

The ECDs in Tables 2 and 3 are then used to perform the table look up operation, which maps the 2-byte 

ECDs to 4-byte ECDs [31]. The vector of next states that were converted into the ECDs in Tables 2 and 3 were 

actually formed from the regexp “/(a|b)*(cd)/” and the process has been discussed in [31]. The tables are then 
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synthesized respectively into logic using the Algorithm 2. The rows and column entries represent the ECD 

inputs that transit to the next states of the ECDRTS-NFA matching machine. 

 

Table 1:  ECD 0 cross product of itself and those of ECD (1, 2 and 3). 
State ECD (0x0) ECD (0x1) ECD (0x2) ECD (0x3) 

0 0,1,2 0,1,2,3 0,1,2 0,1,2 

1 1,2 3 - - 

2 - - - - 

3 - - - - 

4 - - - - 

 

Table 2: Table of the 2-byte state vectors of four columns merged to form 

6 new ECD columns of inputs 
State ECD 0 ECD 1 ECD 2 ECD 3 ECD 4 ECD 5 

0 0,1,2 0,1,2,3 0,1,2 0,1,2,3 0,1,2,4 0,1,2,4 

1 1,2 3 - - 4 - 

2 - - - - - - 

3 - - - - - - 

4 - - - - - - 

 

Table 3: 4-byte table of compressed ECDs 
 ECD 0 ECD 1 ECD 2 ECD 3 ECD 4 

ECD 0 0 1 2 3 4 

ECD 1 0 3 2 3 4 

ECD 2 2 3 2 3 5 

ECD 3 2 3 2 3 5 

ECD 4 2 3 2 3 5 

 
B. The Unique Table Synthesis Compression Process  

The software parser described in [31] creates blocks of 4-byte matching circuits used for matching 

regexps at once [32]. Furthermore, 4-bytes of character inputs are fetched from the BRAMs in Figure 2. The 

ECD inputs are then used to look-up the equivalent ECDs fetched from the BRAM blocks. The newer 

compression technique used in the design ensures that the generated ECDs do not grow beyond 128 in number. 

As such, the process ensures that only 7-bits are needed for compressing each streaming character. This explains 

why 32-bits enter the BRAM blocks, but only 28-bit value equivalent of the ECD inputs is required as seen in 

Figure 2. The table of ECDs are then translated into pure logic circuits. The translation module releases an 

output of compressed <128 bit vector, with each bit position in the vector representing each of the matched 128 

ECDs fetched from the BRAM block as seen in Figure 1. The module ensures that the uniquely synthesized 

table consumes minimal LUTs and other required logic circuits such as Flip-Flops, Multiplexers etc. 

__________________________________________________________________________________________ 

Algorithm 2: Hardware synthesis process for the compressed n-byte ECDs [32]. 

__________________________________________________________________________________________ 

INPUT: An k x k table of n-byte ECD inputs and a 28-bit input from the 2x36kBRAM block described in, 

where n = 2 and 4, and k > 1. 

OUTPUT: A <128-bit vector of compressed ECDs.  

BEGIN 

i. Read the 28-bit inputs from the 2x36kBRAM and the k x k tables of n-byte ECDs. 

ii. Create the relevant 2-dimensional arrays converted into signal variables and initialize the same to 

contain the associated 2-byte and 4-byte tables of compressed ECDs. 

iii. Compute and process the sub-linear table-look up operations to generate the relevant < 128-bit vector 

of outputs. Each bit position of the output bit vector represents an equivalent ECD value.   

iv. Initialize the tables of 2-byte and 4-byte tables of compressed ECDs. Assign the 1-bit value of „1‟ to 

the output variable. 

END. 
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Figure 1: The sub-NFA block. 

 

 
Figure 2: Four 256x8-bit table of ECDs for Mem(0-3)(0) memory blocks, 

  

C. Evaluation 

The ECDRTS-NFA design was also implemented using the Xilinx Vixtex-6 device synthesis tool [31], 

[32]. The design requires only O(n) storage space for the ECDs and O(n
2
m) time to process each of the ECDs 

extracted from each given regexp. It also takes only O(nm) time to search through n patterns with text of length 

m. A data bus width of 7-bits is used to compute the throughput measured in Gigabits per second (Gbps). As 

stated earlier on in [31] and [32], creating a design that generates high throughput while incurring minimal logic 

circuit remains a challenge to many similar pattern matching designs. The formula for computing the design 

throughput is the same as the one used in [31] and [32]. The compared design approaches are represented by the 

column heading design in Table 4. The clock speed (MHz) is the maximum clock frequency attained by each 

design. The throughput, which is the rate at which 4-byte characters are matched per clock cycle, is measured in 

Gigabits per second (Gbps). The data bus width is 32-bit wide, and the product of the clock rate (MHz) and the 

data bus width (32-bits) divided by 1024 bits produces the throughput of matching in Gbps. It is the rate at 

which some workload is achieved. 

 

IV. Discussion 
Looking at the various designs in Table 1, it can be observed that the compared approaches are 4-byte 

character matching designs. Each of result graphs in this section represent the relationship between the various 

design clock speeds and their respective design throughput. Figure 3 shows how the various designs compare 

against each other‟s throughput (Gbps) of matching. The figure shows that the ECDRTS-NFA design throughput 

is about 3.35% higher than the next highest throughput value reported in [20]. The design throughput is also 

about 54.54% higher than the least reported throughput value reported by [37]. Also, Figure 4 show that the 

clock speed of the ECDRTS-NFA design is about 6.21% better than the next highest clock speed reported in 

[20]. It is also about 54.57% better than the least reported Clock Speed reported by [37]. This shows that the 

ECDRTS-NFA design holds some promise especially for the future of Intrusion Detection Systems. The results 

from Table 1 were used to generate the two graphs as seen in Figures 3 and 4.  

. 

 

i. Table of Results 
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Table 1: Table of Design Results [7]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ii. Chart for the Throughput of matching 

 
Figure 3: Various designs against their clock speeds (MHz). 

 

iii. Chart for the Clock Speeds 

 
Figure 4: Various designs against their throughput (Gbps). 

 

V. Conclusion 

Design Approach Input MHz Throughput 

ECDRTS-NFA 4 385.78 12.34 

Brodie, Taylor and Cytron [26] 4 133.00 4.26 

Sourdis and Pnevmatikatos [36] 4 303.00 9.71 

Yamagaki, Sidhu and  

Kamiya [37] 

4 113.40 3.63 

Sutton [38] 4 317.19 10.15 

Clark and Schimmel [39] 4 218.90 7.00 

Yang, Jiang and Prasanna [7] 4 233.13 7.46 

Yang and Prasanna [25] 4 300.00 9.60 

Yang and Prasanna [41]a. 4 198.6 6.36 

Yang and Prasanna [41]b. 4 166.7 5.33 

Ganegedara, Yang and  

Prasanna [40] 

4 202.90 6.50 

Singapura et al. [20] 4 340.63 11.54 
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The result as indicated in Figures 3 and 4 show some promise for the ECDRTS-NFA approach. The 

earlier challenge regarding the amount of time taken to synthesize and placed and routed (PAR) in the ECD-

NFA design [32] has been addressed by the ECDRTS-NFA approach. Furthermore, research is still on-going to 

extend this work, by creating a multi-byte quadruple parallel matching engine version of the ECDRTS-NFA 

design. The proposed quadruple engine will be able to contain and convert more complex regular expression 

patterns in such a way that it can fully take advantage of the parallelism provided by FPGAs. The ECDRTS-NFA 

design was written and implemented using the Java programming language for the software parsing process. It 

was then fully synthesized and PAR on a Xilinx FPGA Virtex-6 device synthesis tool for the hardware phase. 

This s the same process described in the design process for the ECD-NFA [31]. 

For the future work, there is work in progress to scale-up the number of the proposed matching engines 

to about 10, with each sub-Engine containing 4 parallel engines. Furthermore, with the already optimized 

memory arrangement and design described in [32], the scaling process for the ECDRTS-NFA should take 

advantage of the improved memory utilization. It is also hoped that, the scaling process will also improve the 

Throughput Efficiency (TE) of the design, which is another factor that is continuously been considered in such 

areas of research. The TE is used to determine the amount of logic resources consumed by related designs, 

besides just trying to the improve clock speed and throughput of matching. 
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