
IOSR Journal of VLSI and Signal Processing (IOSR-JVSP)  

Volume 8, Issue 6, Ver. I (Nov. - Dec. 2018), PP 34-38 

e-ISSN: 2319 – 4200, p-ISSN No. : 2319 – 4197  

www.iosrjournals.org  

 

DOI: 10.9790/4200-0806013438                                www.iosrjournals.org                                              34 | Page 

Implementation of Modular Reduction and Modular 

Multiplication Algorithms 
  

Mishal Jasmine Ferrao
1
, Mr. Kiran Kumar. V. G

2
, Mrs. Megha N

3 

1(M.Tech. in VLSI Design and Embedded Systems, Sahyadri College of Engineering and Management, Adyar, 

Mangaluru, India) 

2(Associate Professor, Dept. of Electronics and Communication Engineering, Sahyadri College of Engineering 

and Management, Adyar, Mangaluru, India) 

3(Assistant Professor, Dept. of Electronics and Communication Engineering, Sahyadri College of Engineering 

and Management, Adyar, Mangaluru, India) 

Corresponding Author: Mishal Jasmine Ferrao 

 

Abstract: Secure and reliable system has become an important exaction in the modern day offices. With the 

evolution of office equipment’s from handwritten notes to desktops to digital storage of confidential information 

regarding business, client and employee information has to be stored in a secure manner. Cryptography, 

process of making the information classified, switch it to a form that may be non-readable, keeping it safe from 

unauthorized people uses modular operations in many of its algorithms. Unlike other arithmetic operations the 

length of the output does not vary in modular operations. The length and the value of the output is within the 

prime number used in the modular operation also called as modulo. In this paper, three modular reduction 

algorithms and one modular multiplication algorithm is implemented. The algorithms are implemented in Xilinx 

14.2 using Spartan 6 as the device. The results are tabulated in this paper.    

Keywords:  Barrett reduction, Mod without Division. Montgomery Reduction, Montgomery Multiplication.  

----------------------------------------------------------------------------------------------------------------------------- ---------- 

Date of Submission: 22-12-2018                                                                           Date of acceptance: 07-01-2019 

---------------------------------------------------------------------------------------------------------------------------- ----------- 

 

I. Introduction 
 Arithmetic operations like addition, multiplication are commonly used in many of the data processing 

applications. An operation like division is less frequently used but it is still important. There are a few 

applications that require only the remainder from the division process. The aim of the application might be to 

find the last two digits of a number after multiplication or exponentiation operation or find if a particular 

number is divisible by a particular number. For example, the last two digits of  or find if 187596 is divisible 

by 82 and so on. There are also applications like cryptography where the inputs are to be wrapped around a 

particular input which is the key. In these instances modular arithmetic operations are employed. The other 

significant applications of modular operations are hashing, generation of random numbers, International 

Standard Book Number (ISBN) which is a unique numeric book identifier constitutes the group, publication, 

title, parity check bit and music. Digital information is stored in the form of binary digits and these digits are 

segmented into blocks. Each of these blocks are appended with parity bit,  at the end and it is calculated 

using the modular operation given below,  

                                                                            (1) 

 where  is the block of data and  is the number of bits. If the records of the people are stored using 

Social Security Number (SSN) as the key, the array needed is in the size of . The easiest and the most 

efficient method would be to store the records in the table using the index  which is defined by,  

                                                                   (2) 

where N is the size of the array. The Gauss’ Easter formula is also derived using modular operation. The random 

numbers  of a sequence can be generated using convergence theorem,  

                                                                        (3)                                          

where  is the seed and the values of x and y are chosen appropriately such that,  

                                     

 

 

 



Implementation of Modular Reduction and Modular Multiplication Algorithms  

DOI: 10.9790/4200-0806013438                                www.iosrjournals.org                                              35 | Page 

II. Literature Survey 
 The paper is written taking into account many technical papers and text books. An attempt is made to 

implement modular algorithms, both reduction and multiplication. The timing and the extent to which the device 

is utilized is compared which is also the measure of area needed by the algorithm.  The efficient modular 

multiplier uses two multiple-precision multipliers. With the absence of pre-computation multiplication, the 

hardware is reduced to one single precision multiplier and an adder. Based on Barrett reduction and 

Montgomery modular reduction, two interleaved modular multiplication algorithms are implemented. The 

proposed algorithm outshines the standard modular multiplication by more than 50% in case of speed [1]. 

Extended Binary GCD algorithm and the modular multiplication algorithm is modified and merged to propose a 

new modular multiplication or division algorithm. Among the various algorithms currently being used, these 

two happen to be most compatible as the resources like registers and the combinational logic involved in the 

operation and controlling the operation can be shared. With Verilog as the description language, the design is 

implemented in the Synopsys design Compiler using 0.35μm CMOS 3-metal technology [2]. The designed is to 

be utilized in a multi-core system. The aim was to scale down the data transfers between the cores. Hence a 

significant improvement was observed when the modular operations where implemented in a 4 core system 

when compared to a 2 core system [3]. The proposed design is an integration of three algorithms, Kasturba 

multiplication algorithm, Barrett reduction and Montgomery modular multiplication. It was noted that the 

designed algorithm required less speed. Parallel implementation of the algorithm appeared to be more 

advantages. The study speculates that the proposed design gives greater advantage while implementing in a 

hardware and software platform. The Kasturba multiplication algorithm can be replaced by Toom Cook 

algorithm [4].   

 

III. Algorithm Description 
In the paper, three modular reduction and one modular multiplication algorithms are implemented. The 

algorithms implemented are: 

 Barrett Reduction, 

 Mod without Division, 

 Montgomery Reduction, 

 Montgomery Multiplication. 

 

The Barrett reduction algorithm is based on Equation 4. 

                                                                                    (4) 

 The main object of the algorithm is to find the value of y that is given by j mod u. The value of
 
β is pre-

computed and is given by the Equation 5. 

                                                        (5) 

 This is beneficial in instances when several reductions are to be calculated using a single modulo. In 

this algorithm, the value of base, b is very important, it signifies the base of the inputs. The condition while 

selecting the base is that it should be greater than 3. This makes the entire computation less complex. Table 1 is 

the pseudo code for Barrett reduction. The algorithm includes basic operations like addition and multiplication. 

Mod without division is a modular reduction algorithm which efficient for computing large modulo operations. 

The data is streamed and had good spatial and temporal locality. The condition for mod without division is the 

size of the input should greater than that of the modulo. The algorithm also has a pre-computed β. The algorithm 

has certain predefined operations as explained below.  

 ϒ splits the input j into groups of width u, 

 N is the number of groups numbered from 0 to N-1, 

 β is the correction factor calculated by                                          (6) 

Since in any modular arithmetic operations the resultant can never be greater than modulo value, a while loop is 

incorporated at the end of the algorithm. The while loop is executed until the value of r is less than u.  

 The  group is left shifted width of u times. At each shift, if the MSB bit of ϒ is high, the 

correction is done by setting the MSB bit to zero and adding the pre-computed value β to it. MSB bit is checked 

till the MSB bit is reset. This entire operation is repeated till N becomes 1. When there is an overflow, it means 

that ϒ value is greater than u. By adding β to ϒ, it can be ensured that value of ϒ is less than u. The 0th group is 

added to the final result and again checked for overflow condition. The key point of the algorithm is that the 

input data is read only once thus eliminating excess processor cycles. The while at the end of the algorithm is to 

ensure that the final value is not greater than u which is not possible in modular operation. Table 2 is the pseudo 

code of Mod without Division. 

 



Implementation of Modular Reduction and Modular Multiplication Algorithms  

DOI: 10.9790/4200-0806013438                                www.iosrjournals.org                                              36 | Page 

Table 1 Pseudo code for Barrett Reduction. 

  

 Montgomery reduction is implemented as a part of Montgomery modular algorithm to compute the 

value of y is given by  . R is given by  (7) where b is the base of the inputs and k is the 

width of the inputs in bits. The value of  (8) is a pre computed value which can be computed 

by using any of the inverse algorithms like Extended Euclidean algorithm. The algorithm includes simple 

arithmetic and logical operations like shift, addition and multiplication. The entire algorithm is repeated k times 

which is equal to the length of the input in bits. Since the final value can never be greater than u, a while loop is 

employed at the end of the algorithm. Table 3 is the pseudo code for Montgomery reduction.  

 

Table 2 Pseudo code for Mod without Division. 

Inputs: 

 

 
Steps: 

 ϒ = Split (j, Width(u))  

N = Num(ϒ) – 1 

β =  

while N > 0      

                      H = ϒ [N] 

                      for ( i = 0 to Width(u)-1) 

                                 H = H << 1 

                                 while   H width(u)-1 == 1 

                                        H width(u)-1 = 0 

                                        H = H + β 

                      ϒ[N-1] =  ϒ[N-1] + H 

                      if (ϒ[N-1] width(u)-1 == 1) 

                              ϒ[N-1] width(u)-1 = 0 

                                ϒ[N-1] =  ϒ[N-1] + β 

                      N = N – 1 

while ϒ[0] > u 

                     ϒ[0] = ϒ[0] – u 

j mod u = ϒ[0] 

 

 

 

Inputs: 

 
such that un-1≠0 

Outputs: 

y = j mod u 

Steps : 

 

  

 

 

 

 
  

 
 



Implementation of Modular Reduction and Modular Multiplication Algorithms  

DOI: 10.9790/4200-0806013438                                www.iosrjournals.org                                              37 | Page 

Table 3 Pseudo code for Montgomery Reduction. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Montgomery multiplication is an integral part of Montgomery modular operation. The algorithm is 

executed prior to the reduction process. The resultant of the algorithm, y is given by  (9). R 

is related to the base of the inputs and is defined as per Equation (7). The algorithms also computed the  using 

any of the inverse algorithms like Extended Euclidean algorithm. The algorithm consists of basic operations like 

multiplication, shift and addition. In modulo operation, the resultant cannot be greater than zero, hence a while 

loop is used at the end of the algorithm to ensure that the value is always less than u. The algorithm is 

implemented k number of times which is equal to the width of the inputs in bits. Equation 10 includes the 

operation mod b, since b is the base of the inputs, this operation is equivalent to preserving the last digit of the 

result. Similarly the Equation 11 includes the divide by b operation, this is equivalent to preserving all the digits 

except the last digit of the resultant. This reduces the complexity of the algorithm. Table 4 is the pseudo code for 

Montgomery Multiplication. 

 

Table 4 Pseudo code for Montgomery Multiplication. 

Inputs: 

 

 

 
Steps: 

 

 

 

                                                                                                          (10) 

                                                                                                                        (11) 

  

 

 

 

IV. Results and Discussion 
 The algorithms are implemented in Xilinx ISE® Design Suite 14.2 using Spartan 6 as the family. The 

design is synthesized using the XST tool and from the synthesis report and the device utilization summary, the 

timing and the area utilized by the design is tabulated. Table 5 is the synthesis report of all the implemented 

algorithms.  

 

 

 

 

 

 

 

Inputs: 

 

 

Steps: 

 

 

 
              

              

 

 

 



Implementation of Modular Reduction and Modular Multiplication Algorithms  

DOI: 10.9790/4200-0806013438                                www.iosrjournals.org                                              38 | Page 

Table 5 Timing and area report of the algorithms. 

 

 

Timing Area 

Minimum 

input arrival 

time before 

clock (ns) 

Maximum 

output 

required 

time after 

clock(ns) 

Minimum 

Period 

(ns) 

Maximum 

combinational 

path delay (ns) 

Slice 

Registers 

Slice 

LUT’s 
IOB’s 

Barrett Reduction 189.102 4.296 3.365 No Path 18 2770 64 

Mod without Division 121.680 4.174 4.030 No Path 92 1558 65 

Montgomery Reduction 33.718 5.782 2.117 39.014 2 489 68 

Montgomery 

Multiplication 
45.310 5.965 3.384 50.539 2 122 68 

 

The area is given in terms of number of slices, LUT’s (Look up Table) and IOB’s (Input/ Output Block) utilized. 

Xilinx reports different types of delays as listed below, 

 Minimum period, 

 Maximum input arrival time before clock, 

 Maximum output required time after clock, 

 Maximum combinational path delay. 

 

The device utilization summary that is generated in Xilinx, gives an account of the resources of the FPGA used 

which are, 

 Slices Registers, 

 Slices LUT’s, 

 Bonded IOB’s. 

 

V. Conclusion 
 The modular reduction and multiplication algorithms have merits and demerits of their own. The 

advantage of Barrett reduction and mod without division is that it involves simple arithmetic operations like 

addition, multiplication and shift operation. The disadvantage of mod without division is the fact that it cannot 

be implemented using inputs which are of equal width. The width of j should always be greater than u. The 

demerit of Barrett reduction is that the base of the inputs should always be greater than 3. Hence it can 

successfully implemented using binary inputs as their base is 2. In the paper, the base was considered to be 16. 

The usage of Montgomery Multiplication and Montgomery Reduction can be done in the Montgomery modular 

operations. This eliminates three 16x16 multipliers and two 31/16 dividers, which can help to reduce the timing 

and area of the design.  

 The designs can be incorporated in RSA encryption algorithms and other encryption algorithm. Since 

the design was implemented in Spartan 6 which is built on proven 45nm technology, the designs can further be 

designed using 32nm technology. The pre computational values reduce the flexibility of the algorithms. By 

eliminating these values, the algorithms can definitely made flexible and efficient. The Extended Euclidean 

algorithm can be replaced with a more efficient algorithm.  

 

References 
[1]. Xiaodong Yan and Shuguo Li, “Modified Modular Inversion Algorithm for VLSI Implementation”, 2007 7th International 

Conference on ASIC, 22-25 Oct. 2007.    

[2]. Mark A. Will and Ryan K. L. Ko, “Computing Mod Without Mod”, Cryptology ePrint Archive, Report 2014/755, 28 Sep 2014.    

[3]. Scott Vanstone, Alfred Menezes and Paul van Oorschot, Handbook of Applied Cryptography, CRC Press, Inc. Boca Raton, FL, 
USA, 1996. 

[4]. Satyanarayana Vollala, B. Shameedha Begum and N. Ramasubramanian, Hardware Design for Multiplicative Modular Inverse, 

2015 International Conference on Computing and Network Communications (CoCoNet'15), 16-19 Dec., 2015. 
[5]. Ankush Yete, Ananya Kajava P, Hazel Melita Rodrigues, Namratha P and  Kiran Kumar V.G, Implementation of Montgomery 

Modular Multiplication using High Speed Multiplier, 2013 International Journal of Current Engineering and Scientific Research 

(IJCESR), 7-8 Dec. 2013. 

Mishal Jasmine Ferrao" Implementation of Modular Reduction and Modular Multiplication 

Algorithms" IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) , vol. 8, no. 6, 2018, 

pp. 34-38. 


