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Abstract: In the recent decade discrete wavelets have become very popular in Digital Signal Processing area 

due to their capability of simultaneous representation of time-frequency information of a signal. Wavelet 

transform is especially very important for processing non-stationary signals. Due to the high demand for real 

time DSP hardware architectures the demand for high throughput and low power in portable devices requires 

discrete wavelet hardware implementation also to be efficient. In this research three different advanced 

polyphase architectures for wavelet filter banking are implemented. Xilinx Artix-7 FPGAs are used for 

implementation through Vivado 2015.2 design suite. The programming is done using Verilog Hardware 

Description Language (HDL).  
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I. Introduction 
 Fast Fourier Transform (FFT) is highly useful in analyzing the signals whose frequency content does 

not change with time. But it does not represent time based frequency analysis; such a barrier can be filled by 

wavelets. Wavelets are useful for time-frequency analysis. Non stationary signals such as EEG signals, Speech 

signals require time-frequency analysis that is where wavelets are highly useful in time-frequency analysis than 

FFT frequency analysis. Due to better resolution and compression capabilities of Wavelets, these days Wavelets 

are becoming more popular in various applications of Bio-medical signal processing, Speech signal Processing. 

Due to the increasing applications of Wavelets in speech, image, audio and video it is essential to concentrate on 

DWT hardware implementation techniques. These hardware implementations to be efficient in terms of power, 

area, speed, throughput the design has to depend on pipelining, distributed arithmetic, hence efficient memory 

storage and global data transfer are important criteria for implementing for such applications. In this research we 

have considered usage of FPGAs to implement these designs due to its capability of 

reprogramming/reconfigurable and its market for DSP is very emerging. By using high-density field 

programmable logic devices (FPGAs), the discrete wavelet transformation obtains higher processing speed and 

lower costs [5] than other implementation methods. 

 When it comes to non-stationary signal analysis, along with Discrete Wavelet Transform (DWT), Short 

Time Fourier Transform (STFT) is also one of the important techniques. STFT gives constant resolution at all 

frequencies which is a drawback and can be overcome by Wavelet Transform which uses multi-resolution 

technique in which different frequencies are analyzed with different resolutions. In DWT the width of wavelet 

function changes with each spectral component, unlike the constant width of STFT window. Due to the multi 

resolution capability the DWT hardware implementation need has become more important for advancing of the 

technologies [15]. Discrete form of the Wavelet Transform makes the computation easier, makes it easy to 

implement on hardware and reduces the required resources and computation time. 

 

1.1 wavelet families 

 Wavelets are mathematical functions that cut up data into different frequency components, and then 

study each component with a resolution matched to its scale. These basis functions are short waves with limited 

duration, thus the name “wavelets” is used. The basis functions of the Wavelet Transform are scaled with 

respect to frequency. There are many different wavelets that can be used as basis (wavelet) functions; a few of 

them are discussed here. Wavelets are categorized into orthogonal and bi-orthogonal wavelets [4]. There are 

various wavelet families are available such as Haar, Mortlet, Mexcian Hat, Meyer, Daubechies (db), Coiflet, 

Symlet.   
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The following are the wavelet functions for various different wavelets. 

 
(a) (b) 

 

 
(c)                                                                  (d) 

Figure 1 (a) Haar Wavelet (b) Daubechies4 – here the number 4 represents number of vanishing movements (c) 

Symlet (d) Coiflet. 

  

 The first and the simplest is Haar Wavelet. It resembles a step function and it represents same as 

Daubechies db1. Due to Daubechies wavelets orthonormal wavelets makes discrete wavelet analysis more 

practicable. Mexican Hat wavelet is proportional to the second derivative function of the Gaussian probability 

density function [4]. The wavelet is a special case of a larger family of derivative of Gaussian (DOG) wavelets. 

It is also known as the Ricker wavelet. There is no scaling function associated with this wavelet. In mortlet 

wavelet both real valued and complex valued wavelets exist. This wavelet has no scaling function, but is 

explicit. The symlets are nearly symmetrical wavelets proposed by Daubechies as modifications to the db family 

[4]. The properties of the two wavelet families are similar. The Meyer wavelet and scaling function are defined 

in the frequency domain. The basis function of any wavelet produces all wavelet functions used in the 

transformation through translation and scaling it determines the characteristics of the resulting wavelet 

transform. Hence for the chosen wavelet transform has to be effective, we have to consider most importantly the 

details of the application and proper mother wavelet. Haar, Symlet, Daubechies and coiflet wavlets are 

compactly supported orthogonal wavelets, and hence when combined with Meyer wavelets can be used for 

perfect reconstruction [4]. Haar, Daubechies, Meyer wavelets are asymmetric, orthogonal and bio-orthogonal. 

But symlet, coiflets wavelets are near symmetric, but orthogonal and bi-orthogonal.  

 

1.2 Applications 

 One of the most prominent applications of wavelet transform is in FBI finger print compression 

standard. To store in the data bank of finger print wavelet transform is used to compress the finger print pictures. 

At high compression ratios, DCT faces the problem of severe blocking problem after reconstruction, which is 

overcome using Discrete Wavelet Transform. Due to the reason that most prominent information is located in 

high amplitudes and less prominent information stored at low amplitudes so, wavelets are useful at eliminating 

low amplitude components, and then compress the data with high compression ratio. DWT is highly chosen in 

JPEG 2000 compression standard. To reduce mobile data transmission time wavelets are used in speech 

compression. Wavelet transforms are useful in feature extraction, speech recognition, de-noising, edge 

detection, echo cancellation, audio and video compression applications, In OFDM, Biomedical imaging. The 

ability of DWT to reduce distortion after reconstruction it is getting high popularity.   
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II. Architectures For Wavelet Filter Banking 
 The following 4 are very important filter banking structures  

(1)Direct form structure (2) Polyphase structure (3) Lattice structure (4) Lifting structure 

 For hardware implementation efficiency and accuracy of computing of DWT depends on the structure 

chosen.  Each structure has its own advantages and drawbacks, but basing on the application its efficiency 

varies. So basing on the application properly chosen structure gives most suitable implementation can be done. 

Direct form found to be more inefficient for DWT and almost never be used [14, 15]. Lattice and lifting 

structure implementations found to be more efficient in terms of number of computations than polyphase 

structure. By incorporating Distributed Arithmetic in the Polyphase implementations, it can be used more 

efficiently in case of long filters and highly efficient than lattice and lifting structures [12, 14, 15]. Lattice 

structure puts constraint on length of the filters in case of most of the linear phase filters. In case of lattice and 

lifting schemes the output depends on the previous filtering units, the filtering units cannot work in parallel.  But 

in case of polyphase structure the units can work in parallel so to get result in less time [12, 13, 15]. Hence the 

pipelining can be used. So, keeping in mind of advantages of Polyphase structure in hardware implementations 

in this research we have developed various architectures for Polyphase structure.  

 

2.1 Polyphase Structure  

 If the output consists of N samples due to decimation by 2 we use only N/2 samples in case of direct 

form structure analysis filter bank. So computation of remaining N/2 samples becomes redundant. The 

polyphase structure takes the advantage of the fact that the input signal is split into odd and even samples, which 

automatically decimates the input by 2, similarly the filter coefficients are also split into even and odd 

components so that the signal even samples Xeven convolves with low pass even part of the filter G0even and input 

signal odd samples Xodd convolves with G0odd of the filter. The two phases are added together in the end to 

produce the low pass output. Similar lines are applied to the high pass filter Heven and Hodd. The matrix 

representation Polyphase analysis operation is given in equation (1).   

 

              (1) 

  

The length of G0 filter is twice as long as it’s even and odd filters, as they are obtained by splitting G0. 

The evn and odd terms are filtered separately by the even and odd coefficients of the filters, the filters can 

operate in parallel, which improve the efficiency [1, 4]. The polyphase analysis and synthesis filter banks are 

given in the figure 2.  In the direct from synthesis filter bank, input is first samples by adding zeros and then 

filtered. In case of polyphase synthesis filter bank, the filters come first followed by up-samplers which again 

reduce the number of computations in the filtering operations by half. So, in case of both analysis and synthesis 

filter banks the number of computations reduces by 50%. Hence the polyphase filter banks give efficient 

hardware realizations.   

 
Figure 2 Polyphase structure of (a) Analysis filter bank (b) Equivalent representation of synthesis filter bank. 

(c) Synthesis filter bank. 
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2.2 Filter Banking using Distributed Arithmetic (DA) Technique 

2.2.1 Distributed-Arithmetic based approach  

 If filter coefficients are known in advance, the DA technique is very important [1, 4] for computing dot 

product equations such as the ones in DSP FPGA applications. In this DA technique to replace the multipliers 

which occupy large area with small tables for pre-computed sums stored on FPGA Look-Up Tables. The inner 

sum equation is rearranged so that the MAC operation is reduced to a series of LUT calls, and 2’s complement 

shifts and adds [13, 14, 15]. For example for a 8-tap filter, the conventional MAC operation, and the DA-based 

shift-add operation are given in the following Figure 3 (a) & (b). In case of DA architecture, the input samples 

are fed to the parallel-to-serial shift register cascade. For a filter of N-tap, considering B-bit input samples, it 

contains N shift register each of B-bits. As the input samples are shifted serially through the B-shift registers, 

the one bit outputs from each of N registers of the shift register cascade work as address inputs for the LUT. The 

LUT accepts the N bit input vector xb, c[n] represents the N-tap constant coefficient filter and outputs the value 

of , which is already stored in the LUT. 2
N
 word LUT is required for an N-tap filter. The 

LUT output is then shifted based on the weight of xb and then accumulated. For each bit of the input sample this 

process is followed, before a new output sample is available. Every B clock cycles, a new inner product y is 

computed for a B-bit input precision.  

 

 
Figure 3 (a) Conventional MAC  

  

Here a 8-tap serial FIR filter is considered, its coefficients are C0, C1, C2, C3, C4, C5, C6, C7. The DA 

LUT Table 1, which consists of the sums of products of the N bit (here it is N = 8) input vector Xb and all the 

possible combinations of filter coefficients.  

 Conventional MAC designs of FIR filters the performance in terms of throughput depends on filter 

length and inversely proportional to its length (no of TAPs). In case of DA based designs it is independent of 

length, but dependent on input bit precision. If filter size increases the number of hardware resources increases. 

When the filter length is increased, the throughput remains the same while the logic resources increase. If long 

filters, instead of creating a long table, smaller tables are created by partitioning, and outputs can be combined.   
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For the above specified filters, Polyphase form can be obtained by splitting the filters and the input, x[n] into 

even and odd phases to obtain four different filters, hence the length of the filter is halved and smaller LUTs are 

enough.  

 

 
Figure 3 (b) Distributed Arithmetic Architecture 

Figure 3 (a) & (b) for 8-Tap filter 

 
Address Data 

00000000 0 

00000001 C0 

00000010 C1 

00000011 C0+C1 

……… ………. 

……… ………. 

11111110 C7+C6+C5+C4+C3+C2+C1 

11111111 C7+C6+C5+C4+C3+C2+C1+C0 

Table 1 DA-LUT table for a 8-tap filter 

 

Speed Improvement using Parallel DA.  

 DA-Based design is bit-serial approach. So for processing B-bit input, it takes B-clock cycles for one 

bit output result. So such serial distributed arithmetic do have low throughput. If we partition the input words 

into smaller input words and processing them in parallel, increase the parallelism, throughput increases hence 

speed increases and required LUTs increases. If we partition the input B-bits into M sub words, then every new 

input comes out for each B/M clock cycles. In this type of fully parallel DA filters design several bits of the 

input are processed in a clock cycle and achieve maximum speed. At the expense of increased FPGA resources, 

this design style provides high performance. Example PDA architecture is given in the following figure for 8-bit 

input with 4-tap filter. This is given in Figure 4.  
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Figure 4 Parallel Distributed Arithmetic Architecture. The inputs for the first LUT are x0[0] to x0[3]; for the 

second LUT are x1[0] to x1[3], and so on for eighth LUT are x7[0] to x7[3]. In the buffers triangles the values 

are 2
0
, 2

1
 and so on to 2

7
. 

 

2.2.2 Coefficient over Input Distribution (CID) approach based on DA for the filter bank  

A novel architecture is proposed in [10], in which coefficient matrix is distributed over the input. In the 

previous architecture, LUT size exponentially increases with increase in input precision, and this increases 

amount of logic resources required.  The advantage of this current architecture over the previous one is that, in 

this we do not require any memory or LUT tables. Logic resources consumption reduces tremendously. With 

this architecture, the inner mathematical equation can be implemented using set of unique adder system based 

on the coefficient bits consisting of zeros and ones. Based on coefficient bit weight, the output, y, can be 

computed by shifting and accumulating the results of adder system accordingly. So the whole system can be 

implemented just by using adders and shifters.  

 

III. Implementation Of Filter Bank Architectures 
 In this research the architectures for wavelet filter banking are implemented for poly-phase structure. 

The above specified architectures  

1) Polyphase architecture  

2) Distributed Arithmetic based Parallel architecture  

3) CID architectures: A modified DA architecture 

are implemented on Field Programmable Gate Arrays. The FPGAs utilized are Xilinx Artix-7 FPGAs, and the 

Verilog HDL programming is done. The 8 Tap Daubechies wavelets orthogonal filter banks implemented. Only 

the analysis filter banks are considered, synthesis filter banks can be designed using the similar approaches. All 

the coefficients are real numbers, so we convert all of them into integers to get the required size integer and 

required number of digits precision and then convert those integers into binary. Then when the results are 

obtained proper quantization factor is utilized to divide the results to get back the original ones.  

 

The Dabechies 8-Tap orthogonal filter bank  

 This filter is widely used due to its orthogonal properties and it satisfies the perfect reconstruction 

conditions. The coefficients of analysis filters are given in the Table No 2.  

 
Tap Low Pass Filter  High Pass Filter  

0 0.128747426620186 -0.05441584224308161 

1 0.00047248457399797254 0.3128715909144659 
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2 -0.2840155429624281 -0.6756307362980128 

3 -0.015829105256023893 0.5853546836548691 

4 0.5853546836548691 0.015829105256023893 

5 0.6756307362980128 -0.2840155429624281 

6 0.3128715909144659 -0.00047248457399797254 

7 0.05441584224308161 0.128747426620186 

Table 2 Low pass and High pass filter coefficients of 8-Tap Daubechies filter 

  

Floating point operations are slower than integer operations and take much hardware resources, and 

consume high power when it comes to hardware design when compared to integer operations. So, for ease of 

hardware implementation, floating point coefficients are shifted by 2
13

 and the corresponding integer values are 

used. This gives good precision of 5 decimal places. To get the correct result, the output is shifted by 2
-13

 to get 

the correct result.  

 

IV. . Implementation 
 Daubechies orthogonal wavelet filter banks implementation of 8-Tap filter bank is explained in this 

section with all the three architectures described. The Architecture 1: Polyphase filter bank implementations 

architecture; Architecture 2: Distributed Arithmetic based architectures: Parallel DA architectures & 

Architecture 3: CID architectures and implementation results are discussed.  

 

Architecture 1: Polyphase Implementation:  

 In this each of the filter of the analysis bank is divided into even and odd phase to obtain the 4-tap 

filters. The table is given in Table No 3. The incoming input samples, x[n], are multiplexed into even sample 

(Xeven) and odd samples (Xodd). Convolution of even samples with even filter coefficients and the odd 

samples with a delay are convolved with odd filter coefficients. At the end the even and odd phases are added. 

The approximation or scaling coefficients are represented in Low pass filter output, and the detail or wavelet 

coefficients are represented in high pass filter output. 

   
Low Pass Filter High Pass Filter 

Even LPF Odd LPF Even HPF Odd HPF 

0.128747426620186 0.00047248457399797254 -0.05441584224308161 0.3128715909144659 

-0.2840155429624281 -0.015829105256023893 -0.6756307362980128 0.5853546836548691 

0.5853546836548691 0.6756307362980128 0.015829105256023893 -0.2840155429624281 

0.3128715909144659 0.05441584224308161 -0.00047248457399797254 0.128747426620186 

Table 3 Polyphase filters for 8 Tap Daubechies Discrete Wavelet filter bank 

 

Architecture 2: Parallel DA-based implementation 

 This is highly suitable for LUT based architectures of FPGAs. It can be observed from the Table 3 that 

there are 4, 4-tap filters. Each 4 tap filter needs 16 input LUT. Low pass even coefficients are same as High pass 

odd coefficients, but mirror images. Similarly, low pass odd coefficients are same as high pass even coefficients 

with just a difference of sign. So instead of having 4 different LUTs we can use just 2 LUTs and share them for 

all filters with multiplexing process, which causes reduction in speed but at less hardware resource utilization. 

Here it is 13 bit precision is being used, so Serial Distributed Arithmetic based implementation causes each 

output takes 13 clock cycles, which is not always suitable in real time applications. So, parallel Distributed 

Arithmetic based architecture described above is highly useful. All 13 input bits are processed at a time and this 

requires 13 identical LUTs are required for each filter. Here speed increases at the expense of high hardware 

resource utilization.  

 

Architecture 3: Coefficient over Input Distribution (CID) approach based on DA for the filter bank: a 

modified DA Implementation 

 In this architecture adder trees are used instead of LUTs. Similar to LUTs data, here also trees are 

formed by filter coefficients. The input samples are passed through a delay line so that the adder tree gets the 

data in parallel. This is exemplified through the figure 5(a). Low pass even filter can choose X0, X2; X4, X6 and 

so on from the adder tree as inputs to the adder specified in figure 5(b). High pass odd filter can choose X1, X3; 

X5, X7 and so on from the adder tree as inputs to the adder specified in figure (b). As Low pass odd filter and 

High pass even filter have the same coefficients so no need of additional adders to these coefficients. So, here in 

this case we can have only 1 adder for all the results. But if we want to do the addition process in parallel we can 

have more adders which work in parallel.   
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Figure 5 Polyphase implementation of 8 Tap Daubechies with CID modified DA approach (a) Delay line (b) 

adder tree 

  

Adder tree gets output results after execution. Then those outputs are scaled according to the respective 

bit-weight and then added to get the final filter outputs. A pipelined adder exemplified in the figure 6 can be 

used for this process. To obtain the final outputs, even and odd phases are added, which is the simplest process 

for the whole design to be implemented with minimal number of shift and add operations.  

 

 
Figure 6 pipe lined adder shifter for 8-tap Daubechies wavelet filter bank. The first stage buffers have 2

1
 in the 

triangles; second stage buffers have 2
2 
in the triangles

;
 and third stage buffers have 2

3 
in the triangles. 

  

V. Implementation Results 
 In this research the hardware implementation of 8-Tap Daubechies wavelet filter banking is done using 

3 different techniques. All the three above described architectures are implemented using Vivado 2015.2 

synthesis tool, Verilog HDL programming on Xilinx Artix-7 FPGAs. The performances of all the three 

architectures are compared in terms of clock speed, power utilization, and hardware resource utilization. The 

details are given in the following table 4. 
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 Architecture 1 corresponds to Polyphase Implementation; Architecture 2 corresponds to Parallel DA-

based implementation; Architecture 3 corresponds to Coefficient over Input Distribution (CID) approach based 

on DA for the filter bank: a modified DA approach.  

 From the hardware resource utilization results it is observable that Architecture 2 takes much hardware 

than all of them. Architecture 2 takes 41% more resources than Architecture 1; and 50.5% more resources than 

Architecture 3. The architecture 2 takes more resources because it utilizes fully parallel architecture of DA 

based approach. It would have consumed less hardware if not parallel architecture, but if not parallel 

architecture then less throughput. So, if area is a constraint Architecture 3 would be a good choice.  

 One more performance consideration is clock frequency. The table 4 and bar graphs Figures 7, 8, 9 

show the maximum operating frequency of 3 architectures. From the obtained results it is observed that 

Architecture 2 is much faster than all architectures. It works 35.36% much faster than Architecture 1, and 

51.82% much faster than Architecture 3. So, Architecture 2 is a best choice if we require high speed of 

operation and operating at higher sampling rates.  

 From the power utilization results it is clear that Architecture 3 consumes less power when compared to 

all the architectures. So, for power and area efficiency Architecture 3 is a best choice; and for high speed and 

high throughput Architecture 2 is a best choice.   

 
 FFs 

(267600) 

LUTs  

(133800) 

Total hardware 

(FFs+LUTs) 

On chip power 

(mW) 

Clock speed 

(MHz) 

Time period  

(ms) 

Architecture-1 856 530 1386 210.2 60.89 16.423 

Architecture-2 1128 826 1954 440.5 82.42 12.133 

Architecture-3 798 500 1298 187.4 54.29 18.420 

Table 4 the performance of all the three implemented architectures 

 

 
Figure 7  Utilization of FPGA Hardware resources 

 

 
Figure 8 Maximum speed (MHz) 
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Figure 9  Total onchip power utilization (mW) 

 

VI. Conclusion 
 For multi-resolution analysis of signals, Discrete Wavelet transforms are highly useful. This transform 

can be implemented using Wavelet filter banks. In this research three advanced architectures have been 

implemented for 8 Tap Daubechies wavelets: Polyphase architecture, Polyphase with fully parallel DA 

architecture, Polyphase with shifting and adding based modified DA architecture. All the three architectures are 

implemented on Xilinx Artix-7 FPGAs using Vivado synthesis tool, and Verilog HDL. Performances of the 

three architectures are analyzed using clock speed, on-chip power, hardware resource utilization (area). The 

Architecture 2 is found to be best in case of high clock speed, higher sampling rates of operation and high 

throughput. The architecture 3 is found to be best choice in terms of low power and low area.  
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