Abstract: The model Zinc II dinuclear complex was highly active in catalyzing the aerobic oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in mixed aqueous solution at pH 8.5, the activity measured in terms of kcat is 4.58 min-1 with very high catalytic efficiency (kcat/KM) 3.3 x 106. Saturation kinetic studies show that the order of conversion of substrate to product quinone has been confirmed by UV–vis spectrophotometric study.
Keywords: Heptadentate ligand, dinuclear complex, crystal structure, DFT study, catecholase activity
[1]. R. Than, A. A. Feldmann and B. Krebs, Structural and functional studies on ... and catechol oxidases, Coord. Chem. Rev. 182, 1999, 211-215.
[2]. S. Torelli, C. Belle, I. Gautier-Luneau, J. L. Pierre, E. Saint-Aman, J. M. Latour, L. Le Pape and D. Luneau, pH controlled change of the metal coordination in dicopper.., Inorg. Chem. 39, 2000, 3526-3536. [3]. E. Monzani, L. Quinti, A. Perotti, L. Casella, M. Gullotti, L. Randaccio, S. Geremia, G. Nardin, P. Faleschini and G. Tabbi, Tyrosinase Models. Synthesis, Structure, Catechol Oxidase Activity, and Phenol Monooxygenase Activity of a Dinuclear Copper Complex Derived from a Triamino Pentabenzimidazole Ligand, Inorg. Chem. 37, 1998, 553-562.
[4]. A. Guha, T. Chattopadhyay, N. D. Paul, M. Mukherjee, S. Goswami, T. K. Mondal, E. Zangrando and D. Das, Radical pathway in catecholase activity with zinc-based model complexes of compartmental ligands, Inorg Chem., 51, 2012, 8750–8759.
[5]. (a) M. E. Bodini, G. Copia, R. Robinson and D. T. Sawyer, Designed metalloprotein stabilizes a semiquinone radical, Inorg Chem., 22, 1983, 126–129; (b) A. Hens, A. Maity and K. K. Rajak, N, N coordinating schiff base ligand acting as a fluorescence sensor for zinc (II) and colorimetric sensor for copper (II), and zinc (II) in mixed aqueous media Inorg. Chimica Acta., 423, 2014, 408-420..