Abstract: In this research been applied predictive analytics techniques, and a KNN model has been generated to evaluate the pre- diction percentage. The KNN (K-Nearest Neighbors) algorithm was applied to predict the probability of dropout in each stu- dent and its accuracy was evaluated using a confusion matrix. Also, information was collected on the 12 relevant academic vari- ables for the study, including academic performance, the number of subjects taken, the number of electives, and selection, To pre- dict dropout, the number of neighbors was set to 4,...
Keywords: dropout, higher education, machine learning, data mining, predictive patterns
[1]. Alexander, B., Ashford-Rowe, K., Barajas-Murphy, N., Dobbin, G., Knott, J., Mccormack, M., Pomerantz, J., Seilhamer, R., Weber, N.: EDUCAUSE Horizon Report: 2019 Higher Education Edition
[2]. Quiroz-Fabra, J., Bran-Piedrahita, L., Valencia-Arias, A.: Tendencias Investigativas Alrededor De La Deserci´On Estudiantil En Contextos De Edu- Caci´On Superior: Un An´Alisis Bibliom´Etrico (30), 83–100.
Https://Doi.Org/ 10.18601/16577175.N30.06. Number: 30. Accessed 2023-05-12
[3]. Cajahuanca, J.E.V., Raymundo, F.N., Franco, A.C.L., Flores, J.D.J.: Deserci´On Universitaria: Evaluaci´On De Diferentes Algoritmos De Machine Learning Para Su Predicci´On XXVIII(3). Accessed 2023-05-15
[4]. Esteban Garc´Ia, M., Bernardo Guti´Errez, A.B., Rodr´Iguez-Mun˜iz, L.J.: Permanencia En La Universidad: La Importancia De Un Buen Comienzo 44(1), 1–6. Https://Doi.Org/10.1016/J.Aula.2015.04.001. Publisher: Else- Vier. Accessed 2023-05-15
[5]. Vinuesa, T.S., Zermen˜o, M.G.G., Le´On, N., De Marzo: Doctorado En Educaci´On Y TIC (E-Learning) Universitat